Patents by Inventor Robert Johansson
Robert Johansson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20180009429Abstract: The disclosed invention makes use of a wheel speed signal to detect a wheel anomaly such as a loose wheel or a wheel with zero pressure. The wheel speed signal is used as a basis to determine a first and a second detection signal. A further basis for determining the first and second detection signals are a first and second reference signal, respectively. The anomaly of e.g. a loose wheel is detected, according to the teaching of the invention if at least one of the detection signals exceeds a threshold. In particular, the disclosure relates to methods, systems and computer program products to achieve the mentioned objective.Type: ApplicationFiled: January 25, 2016Publication date: January 11, 2018Inventors: Andreas HALL, Robert JOHANSSON, Martin LILJA, Gustav LINDMARK, Peter LINDSKOG, Thomas SVANTESSON
-
Patent number: 9491390Abstract: A method of implementing Correlated Multi-Sampling (CMS) in an image sensor with improved analog-to-digital converter (ADC) linearity starts with an ADC circuitry included in a readout circuitry that generates a plurality of uncorrelated random numbers used as a plurality of ADC pedestals for sampling image data. A Successive Approximation Register (SAR) included in the ADC circuitry stores a different one of the ADC pedestals before each sampling of the image data. The ADC circuitry samples an image data from a row a plurality of times against plurality of ADC pedestals to obtain a plurality of sampled input data. The ADC circuitry converts each of the plurality of sampled input data from analog to digital, which includes performing a binary search using the SAR. Other embodiments are also described.Type: GrantFiled: November 26, 2014Date of Patent: November 8, 2016Assignee: OmniVision Technologies, Inc.Inventor: Robert Johansson
-
Publication number: 20160310885Abstract: Provided are a method and to a wet scrubber for removing particles from gas. The wet scrubber includes a second vertical cylindrical vessel having a second upper end for receiving an accelerated stream of liquid- and particles-laden gas from a vertically oriented venturi channel and a second lower end for feeding the accelerated stream of liquid- and particles-laden gas to a swirl generator. The second vertical cylindrical vessel and the swirl generator are arranged in a vertical cylindrical separation space of a first vertical cylindrical vessel. The swirl generator is arranged above the liquid tank.Type: ApplicationFiled: December 18, 2014Publication date: October 27, 2016Applicant: OUTOTEC (FINLAND) OYInventors: Jiliang XIA, Robert JOHANSSON, Satu JYRKÖNEN, Leif SKILLING, Anders GUSTAVSSON, Lars HEDSTRÖM
-
Patent number: 9402039Abstract: A method of reading out a pixel includes resetting a photodetector of the pixel. Light incident on the photodetector is then integrated for a single exposure of a single image capture. A floating diffusion node of the pixel is then reset. The floating diffusion is set to low conversion gain and a low conversion gain reset signal is sampled from the floating diffusion node. The floating diffusion is set to high conversion gain and a high conversion gain reset signal is sampled from the floating diffusion node. Charge carriers are transferred from the photodetector to the floating diffusion node and a high conversion image signal is then sampled from the floating diffusion node. The floating diffusion is set to low conversion gain. Charge carriers are transferred again from the photodetector to the floating diffusion node and a low conversion image signal is sampled from the floating diffusion node.Type: GrantFiled: November 26, 2014Date of Patent: July 26, 2016Assignee: OmniVision Technologies, Inc.Inventors: Johannes Solhusvik, Robert Johansson
-
Patent number: 9386240Abstract: An image sensor, readout circuitry for an image sensor, and a method of operating readout circuitry are disclosed. Readout circuitry includes an analog-to-digital-converter (“ADC”) including input stage circuitry with a first selectable input and a second selectable input. The ADC is coupled to sequentially receive a first reset signal, a second reset signal, a high gain image signal, and a low gain image signal, in that order. The input stage circuitry is configured to select the first selectable input when receiving the first reset signal and the low gain image signal and select the second selectable input when receiving the second reset signal and the high gain image signal.Type: GrantFiled: March 12, 2015Date of Patent: July 5, 2016Assignee: OmniVision Technologies, Inc.Inventors: Robert Johansson, Trygve Willassen
-
Publication number: 20160150173Abstract: A method of implementing Correlated Multi-Sampling (CMS) in an image sensor with improved analog-to-digital converter (ADC) linearity starts with an ADC circuitry included in a readout circuitry that generates a plurality of uncorrelated random numbers used as a plurality of ADC pedestals for sampling image data. A Successive Approximation Register (SAR) included in the ADC circuitry stores a different one of the ADC pedestals before each sampling of the image data. The ADC circuitry samples an image data from a row a plurality of times against plurality of ADC pedestals to obtain a plurality of sampled input data. The ADC circuitry converts each of the plurality of sampled input data from analog to digital, which includes performing a binary search using the SAR. Other embodiments are also described.Type: ApplicationFiled: November 26, 2014Publication date: May 26, 2016Inventor: Robert Johansson
-
Patent number: 9145754Abstract: A tubing hanger (1) landing in a tubular element (101), having a coupling assembly (11) for hydraulic coupling between the tubing hanger (1) and the element. A coupling element (17) moves radially between an outer coupled position and an inner non-coupled position. An actuation element (25) with a contact surface (25f) exerts an outward actuation force onto an inner actuation surface (17a) of the coupling element. The actuation element comprises two actuation sections (25x, 25y) exposed to a outward force from an actuation arrangement (27). The contact surface (25f) has a distance the actuation sections. The actuation element moves in the radial outward direction so that the movement of at least one of the two actuation sections (25x, 25y) stops after the radial movement of the contact surface (25f) stops. The contact surface (25f) movement halts as the coupling element (17) reaches the coupled position.Type: GrantFiled: November 22, 2012Date of Patent: September 29, 2015Assignee: Aker Subsea ASInventor: Robert Johansson
-
Publication number: 20150201140Abstract: A method of reading out a pixel includes resetting a photodetector of the pixel. Light incident on the photodetector is then integrated for a single exposure of a single image capture. A floating diffusion node of the pixel is then reset. The floating pixel is set to low conversion gain and a low conversion gain reset signal is sampled from the floating diffusion node. The floating diffusion is set to high conversion gain and a high conversion gain reset signal is sampled from the floating diffusion node. Charge carriers are transferred from the photodetector to the floating diffusion node and a high conversion image signal is then sampled from the floating diffusion node. The floating diffusion is set to low conversion gain. Charge carriers are transferred again from the photodetector to the floating diffusion node and a low conversion image signal is sampled from the floating diffusion node.Type: ApplicationFiled: November 26, 2014Publication date: July 16, 2015Inventors: Johannes Solhusvik, Robert Johansson
-
Patent number: 8969774Abstract: An image sensor includes a pixel array having pixels arranged in rows and columns, a first successive-approximation-register (“SAR”) analog-to-digital-converter (“ADC”), a second SAR ADC, and first and second control circuitry. The first SAR ADC includes a first capacitor array (“FCA”) that shares a first common terminal coupled to a first comparator and coupled to receive first analog pixel signals. The second SAR ADC includes a second capacitor array (“SCA”) that shares a second common terminal selectably coupled to a second comparator and coupled to receive second analog pixel signals. The first and second control modules are coupled to selectably switch bottom plates of the FCA from a low reference voltage to the high reference voltage at a same time as selectably switching bottom plates of the SCA from a high reference voltage to the low reference voltage.Type: GrantFiled: December 27, 2012Date of Patent: March 3, 2015Assignee: OmniVision Technologies, Inc.Inventor: Robert Johansson
-
Publication number: 20140345873Abstract: A tubing hanger (1) landing in a tubular element (101), having a coupling assembly (11) for hydraulic coupling between the tubing hanger (1) and the element. A coupling element (17) moves radially between an outer coupled position and an inner non-coupled position. An actuation element (25) with a contact surface (25f) exerts an outward actuation force onto an inner actuation surface (17a) of the coupling element. The actuation element comprises two actuation sections (25x, 25y) exposed to a outward force from an actuation arrangement (27). The contact surface (25f) has a distance the actuation sections. The actuation element moves in the radial outward direction so that the movement of at least one of the two actuation sections (25x, 25y) stops after the radial movement of the contact surface (25f) stops. The contact surface (25f) movement halts as the coupling element (17) reaches the coupled position.Type: ApplicationFiled: November 22, 2012Publication date: November 27, 2014Applicant: Aker Subsea ASInventor: Robert Johansson
-
Patent number: 8888417Abstract: The present invention relates to methods and systems for automatically feeding a feeding housing (206) of a drilling device (200). The drilling device (200) includes a drill stand (202), a drilling machine (204) and a feeding housing (206). Further, the drilling machine (204), which is suspended by the feeding housing (206), includes a drill with a drilling motor for performing a drilling operation through a drilling object. The feeding unit (208) includes an electric feeding motor for feeding the feeding housing (206) along the stand (202). Further, the feeding unit (208) also includes a controller for manually influencing the feeding motor's direction of rotation, speed and feeding force.Type: GrantFiled: April 16, 2010Date of Patent: November 18, 2014Assignee: Husqvarna ABInventors: Andreas Jonsson, Robert Johansson
-
Patent number: 8878118Abstract: A step-up converter includes an input coupled to receive a first voltage potential and an output coupled to output a second voltage potential higher than the first voltage potential. The step-up converter also includes an array of capacitance charge pumps. Each of the capacitance charge pumps in the array includes switches to be modulated to individually run each of the capacitance charge pumps by selectively connecting each of the capacitance charge pumps to the input and the output. The step-up converter further includes a control module coupled to the switches of each of the capacitance charge pumps and configured to modulate the switches at a substantially fixed frequency. The control module modulates the switches of selected capacitance charge pumps in the array in response to a current draw on the output. The step-up converter may be included in an image sensor.Type: GrantFiled: August 15, 2012Date of Patent: November 4, 2014Assignee: OmniVision Technologies, Inc.Inventors: Robert Johansson, Tore Martinussen
-
Patent number: 8854475Abstract: A novel image sensor includes a pixel array, a row control circuit, a test signal injection circuit, a sampling circuit, an image processing circuit, a comparison circuit, and a control circuit. In a particular embodiment, the test signal injection circuit injects test signals into the pixel array, the sampling circuit acquires pixel data from the pixel array, and the comparison circuit compares the pixel data with the test signals. If the pixel data does not correspond to the test signals, the comparison circuit outputs an error signal. Additional comparison circuits are provided to detect defects in the control circuitry of an image sensor.Type: GrantFiled: February 8, 2013Date of Patent: October 7, 2014Assignee: OmniVision Technologies, Inc.Inventors: Robert Johansson, Tore Martinussen
-
Publication number: 20140226027Abstract: A novel image sensor includes a pixel array, a row control circuit, a test signal injection circuit, a sampling circuit, an image processing circuit, a comparison circuit, and a control circuit. In a particular embodiment, the test signal injection circuit injects test signals into the pixel array, the sampling circuit acquires pixel data from the pixel array, and the comparison circuit compares the pixel data with the test signals. If the pixel data does not correspond to the test signals, the comparison circuit outputs an error signal. Additional comparison circuits are provided to detect defects in the control circuitry of an image sensor.Type: ApplicationFiled: February 8, 2013Publication date: August 14, 2014Applicant: OmniVision Technologies, Inc.Inventors: Robert Johansson, Tore Martinussen
-
Publication number: 20140183333Abstract: An image sensor includes a pixel array having pixels arranged in rows and columns, a first successive-approximation-register (“SAR”) analog-to-digital-converter (“ADC”), a second SAR ADC, and first and second control circuitry. The first SAR ADC includes a first capacitor array (“FCA”) that shares a first common terminal coupled to a first comparator and coupled to receive first analog pixel signals. The second SAR ADC includes a second capacitor array (“SCA”) that shares a second common terminal selectably coupled to a second comparator and coupled to receive second analog pixel signals. The first and second control modules are coupled to selectably switch bottom plates of the FCA from a low reference voltage to the high reference voltage at a same time as selectably switching bottom plates of the SCA from a high reference voltage to the low reference voltage.Type: ApplicationFiled: December 27, 2012Publication date: July 3, 2014Applicant: OMNIVISION TECHNOLOGIES, INC.Inventor: Robert Johansson
-
Patent number: 8736684Abstract: A novel image sensor includes a pixel array, a row control circuit, a test signal injection circuit, a sampling circuit, an image processing circuit, a comparison circuit, and a control circuit. In a particular embodiment, the test signal injection circuit injects test signals into the pixel array, the sampling circuit acquires pixel data from the pixel array, and the comparison circuit compares the pixel data with the test signals. If the pixel data does not correspond to the test signals, the comparison circuit outputs an error signal. Additional comparison circuits are provided to detect defects in the control circuitry of an image sensor.Type: GrantFiled: February 8, 2013Date of Patent: May 27, 2014Assignee: OmniVision Technologies, Inc.Inventors: Robert Johansson, Tore Martinussen
-
Publication number: 20140048686Abstract: A step-up converter includes an input coupled to receive a first voltage potential and an output coupled to output a second voltage potential higher than the first voltage potential. The step-up converter also includes an array of capacitance charge pumps. Each of the capacitance charge pumps in the array includes switches to be modulated to individually run each of the capacitance charge pumps by selectively connecting each of the capacitance charge pumps to the input and the output. The step-up converter further includes a control module coupled to the switches of each of the capacitance charge pumps and configured to modulate the switches at a substantially fixed frequency. The control module modulates the switches of selected capacitance charge pumps in the array in response to a current draw on the output. The step-up converter may be included in an image sensor.Type: ApplicationFiled: August 15, 2012Publication date: February 20, 2014Applicant: OMNIVISION TECHNOLOGIES, INCInventors: Robert Johansson, Tore Martinussen
-
Patent number: 8446307Abstract: A comparator including a preamplifier amplifying a first signal and a second signal to produce a first amplified signal on a first output terminal and a second amplified signal on a second output terminal. The comparator also includes a capacitor, a clamp and a latch coupled in parallel to the first output terminal and the second output terminal of the preamplifier. A control circuit is coupled to the variable capacitor and the clamp and is configured to close the clamp during a first time period to cause the first amplified signal and the second amplified signal to bypass the capacitor and the latch, and open the clamp during a second time period following the first time period to cause the first amplified signal and the second amplified signal to be coupled to the capacitor and the latch. The capacitor filters the amplified signals, and the latch produces a digital output signal of the comparator based on the filtered signals.Type: GrantFiled: September 30, 2011Date of Patent: May 21, 2013Assignee: Aptina Imaging CorporationInventors: Robert Johansson, Steffen Skaug, Timothy Bales
-
Publication number: 20130057422Abstract: A comparator including a preamplifier amplifying a first signal and a second signal to produce a first amplified signal on a first output terminal and a second amplified signal on a second output terminal. The comparator also includes a capacitor, a clamp and a latch coupled in parallel to the first output terminal and the second output terminal of the preamplifier. A control circuit is coupled to the variable capacitor and the clamp and is configured to close the clamp during a first time period to cause the first amplified signal and the second amplified signal to bypass the capacitor and the latch, and open the clamp during a second time period following the first time period to cause the first amplified signal and the second amplified signal to be coupled to the capacitor and the latch. The capacitor filters the amplified signals, and the latch produces a digital output signal of the comparator based on the filtered signals.Type: ApplicationFiled: September 30, 2011Publication date: March 7, 2013Applicant: APTINA IMAGING CORPORATIONInventors: Robert Johansson, Steffen Skaug, Timothy Bales
-
Publication number: 20130039711Abstract: The present invention relates to methods and systems for automatically feeding a feeding housing (206) of a drilling device (200). The drilling device (200) includes a drill stand (202), a drilling machine (204) and a feeding housing (206). Further, the drilling machine (204), which is suspended by the feeding housing (206), includes a drill with a drilling motor for performing a drilling operation through a drilling object. The feeding unit (208) includes an electric feeding motor for feeding the feeding housing (206) along the stand (202). Further, the feeding unit (208) also includes a controller for manually influencing the feeding motor's direction of rotation, speed and feeding force.Type: ApplicationFiled: April 16, 2010Publication date: February 14, 2013Applicant: HUSQVARNA ABInventors: Andreas Jonsson, Robert Johansson