Patents by Inventor Robert John Wilby
Robert John Wilby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9903750Abstract: A method of determining information relating to the mass of a semiconductor wafer is disclosed. The method comprises loading the semiconductor wafer on to a measurement area of a weighing device having weight compensation means arranged to compensate for a predetermined weight loaded on to the measurement area; generating measurement output indicative of a difference between the weight of the semiconductor wafer and the predetermined weight; and using the measurement output to determine information relating to the mass of the semiconductor wafer. Also discloses is a corresponding weighing device for determining information relating to the mass of a semiconductor wafer.Type: GrantFiled: August 21, 2014Date of Patent: February 27, 2018Assignee: METRYX LTD.Inventors: Robert John Wilby, Adrian Kiermasz
-
Patent number: 9818658Abstract: A semiconductor wafer processing method comprising controlling the temperature of a semiconductor wafer to be within a predetermined processing temperature range by: causing a first temperature change of the semiconductor wafer using a first temperature changing unit; and subsequently causing a second temperature change using a second temperature changing unit; wherein the first change is greater than the second change; and subsequently loading the semiconductor wafer on a processing area of a semiconductor wafer processing apparatus.Type: GrantFiled: November 3, 2014Date of Patent: November 14, 2017Assignee: METRYX LIMITEDInventors: Robert John Wilby, Adrian Kiermasz
-
Patent number: 9349624Abstract: Metrology methods and apparatus for semiconductor wafer fabrication in which data for metrology is obtained by detecting a measurable property of a monitored entity, which is either (i) a wafer transporter (e.g. a FOUP) loaded with one or more wafers to be monitored, or (ii) a plurality of wafers. Performing metrology measurements on a loaded wafer transporter enables the step of extracting wafer (s) from the transporter for metrology measurements to be omitted. Moreover, metrology measurement may be obtained while transporting the wafer (s) between treatment locations. By considering a plurality of wafers as a unit, a single measurement representing a combination of individual wafer responses is obtained. All wafers contribute to the metrology measurement without the need to perform individual wafer measurements.Type: GrantFiled: March 10, 2009Date of Patent: May 24, 2016Assignee: METRYX LIMITEDInventor: Robert John Wilby
-
Patent number: 9310244Abstract: A semiconductor wafer metrology technique which corrects for the effect of electrostatic forces on an atmospheric buoyancy compensated weight force measurement of a semiconductor wafer. In one aspect a wafer is weighed in a faraday cage whose is measured independently. A change in the measured weight of the faraday cage can be used to correct the measure weight the wafer. In another aspect a direct electrostatic measurement can be converted into a weight correction using a predetermined correlation between an electrostatic charge measured by the charge meter and a weight error force. In another aspect the electrostatic measurement may be indirect, e.g. derived from varying the distance between the wafer and a grounded plate parallel to the wafer to effect a change in an electrostatic force between the grounded plate and the wafer.Type: GrantFiled: February 24, 2014Date of Patent: April 12, 2016Assignee: METRYX LIMITEDInventor: Robert John Wilby
-
Patent number: 9228886Abstract: A semiconductor wafer metrology technique comprising performing atmospheric buoyancy compensated weighing of a wafer, in which the wafer is weighed in a substantially upright condition. A vertical or near vertical wafer orientation causes the surface area in the direction of a force (weight) sensor to be reduced compared with a horizontal wafer orientation. Hence, the electrostatic force components acting in the same direction as the wafer weight force component is reduced.Type: GrantFiled: November 27, 2012Date of Patent: January 5, 2016Assignee: METRYX LIMITEDInventor: Robert John Wilby
-
Patent number: 8683880Abstract: A semiconductor wafer metrology technique which corrects for the effect of electrostatic forces on an atmospheric buoyancy compensated weight force measurement of a semiconductor wafer. In one aspect a wafer is weighed in a faraday cage whose is measured independently. A change in the measured weight of the faraday cage can be used to correct the measure weight the wafer. In another aspect a direct electrostatic measurement can be converted into a weight correction using a predetermined correlation between an electrostatic charge measured by the charge meter and a weight error force. In another aspect the electrostatic measurement may be indirect, e.g. derived from varying the distance between the wafer and a grounded plate parallel to the wafer to effect a change in an electrostatic force between the grounded plate and the wafer.Type: GrantFiled: September 30, 2008Date of Patent: April 1, 2014Assignee: Metryx LimitedInventor: Robert John Wilby
-
Patent number: 8357548Abstract: A semiconductor wafer metrology technique comprising performing atmospheric buoyancy compensated weighing of a wafer, in which the wafer is weighed in a substantially upright condition. A vertical or near vertical wafer orientation causes the surface area in the direction of a force (weight) sensor to be reduced compared with a horizontal wafer orientation. Hence, the electrostatic force components acting in the same direction as the wafer weight force component is reduced.Type: GrantFiled: September 29, 2008Date of Patent: January 22, 2013Assignee: Metryx LimitedInventor: Robert John Wilby
-
Patent number: 8200447Abstract: Measuring apparatus for monitoring the position of the center of mass of a semiconductor wafer is disclosed. The apparatus includes a wafer support (14) with a ledge for supporting an edge of a wafer (2) when it is lifted at a detection point by a probe (16). The probe (16) is connected to a force sensor (18) which senses a force due to a moment of the wafer about a fulcrum (4) on the wafer support (14). Moment measurements are taken at a plurality of detection points and a processing unit calculates the position of the center of mass from the moment measurements. Changes in wafer mass distribution (e.g. due to faulty treatment steps) which cause movement of the center of mass can be detected.Type: GrantFiled: January 18, 2011Date of Patent: June 12, 2012Assignee: Metryx LimitedInventors: Robert John Wilby, Adrian Kiermasz
-
Patent number: 8200353Abstract: Measuring apparatus and method for monitoring fabrication of a semiconductor wafer by exciting and measuring vibrations of the wafer substrate. A measurable parameter of vibration (e.g. frequency) is indicative of mass of a vibrating region. Mass change caused by wafer treatment is reflected in changes in vibration measurements taken before and after that treatment. The apparatus includes a wafer support e.g. projecting ledge (19), a vibration exciting device e.g. contact probe (28) or pressure differential applicator, and a measurement device e.g. frequency sensor (62).Type: GrantFiled: March 4, 2008Date of Patent: June 12, 2012Assignee: Metryx LimitedInventors: Robert John Wilby, Adrian Kiermasz
-
Publication number: 20110119009Abstract: Measuring apparatus for monitoring the position of the centre of mass of a semiconductor wafer is disclosed. The apparatus includes a wafer support (14) with a ledge for supporting an edge of a wafer (2) when it is lifted at a detection point by a probe (16). The probe (16) is connected to a force sensor (18) which senses a force due to a moment of the wafer about a fulcrum (4) on the wafer support (14). Moment measurements are taken at a plurality of detection points and a processing unit calculates the position of the centre of mass from the moment measurements. Changes in wafer mass distribution (e.g. due to faulty treatment steps) which cause movement of the centre of mass can be detected.Type: ApplicationFiled: January 18, 2011Publication date: May 19, 2011Inventors: Robert John Wilby, Adrian KIERMASZ
-
Patent number: 7892863Abstract: Measuring apparatus for monitoring the position of the center of mass of a semiconductor wafer is disclosed. The apparatus includes a wafer support (14) with a ledge for supporting an edge of a wafer (2) when it is lifted at a detection point by a probe (16). The probe (16) is connected to a force sensor (18) which senses a force due to a moment of the wafer about a fulcrum (4) on the wafer support (14). Moment measurements are taken at a plurality of detection points and a processing unit calculates the position of the center of mass from the moment measurements. Changes in wafer mass distribution (e.g. due to faulty treatment steps) which cause movement of the center of mass can be detected.Type: GrantFiled: October 8, 2007Date of Patent: February 22, 2011Assignee: Metryx LimitedInventors: Robert John Wilby, Adrian Kiermasz
-
Publication number: 20110015773Abstract: Metrology methods and apparatus for semiconductor wafer fabrication in which data for metrology is obtained by detecting a measurable property of a monitored entity, which is either (i) a wafer transporter (e.g. a FOUP) loaded with one or more wafers to be monitored, or (ii) a plurality of wafers. Performing metrology measurements on a loaded wafer transporter enables the step of extracting wafer (s) from the transporter for metrology measurements to be omitted. Moreover, metrology measurement may be obtained while transporting the wafer (s) between treatment locations. By considering a plurality of wafers as a unit, a single measurement representing a combination of individual wafer responses is obtained. All wafers contribute to the metrology measurement without the need to perform individual wafer measurements.Type: ApplicationFiled: March 10, 2009Publication date: January 20, 2011Inventor: Robert John Wilby
-
Publication number: 20100285614Abstract: A semiconductor wafer metrology technique comprising performing atmospheric buoyancy compensated weighing of a wafer, in which the wafer is weighed in a substantially upright condition. A vertical or near vertical wafer orientation causes the surface area in the direction of a force (weight) sensor to be reduced compared with a horizontal wafer orientation. Hence, the electrostatic force components acting in the same direction as the wafer weight force component is reduced.Type: ApplicationFiled: September 29, 2008Publication date: November 11, 2010Inventor: Robert John Wilby
-
Publication number: 20100206098Abstract: A semiconductor wafer metrology technique which corrects for the effect of electrostatic forces on an atmospheric buoyancy compensated weight force measurement of a semiconductor wafer. In one aspect a wafer is weighed in a faraday cage whose is measured independently. A change in the measured weight of the faraday cage can be used to correct the measure weight the wafer. In another aspect a direct electrostatic measurement can be converted into a weight correction using a predetermined correlation between an electrostatic charge measured by the charge meter and a weight error force. In another aspect the electrostatic measurement may be indirect, e.g. derived from varying the distance between the wafer and a grounded plate parallel to the wafer to effect a change in an electrostatic force between the grounded plate and the wafer.Type: ApplicationFiled: September 30, 2008Publication date: August 19, 2010Inventor: Robert John Wilby
-
Publication number: 20100147078Abstract: Measuring apparatus and method for monitoring fabrication of a semiconductor wafer by exciting and measuring vibrations of the wafer substrate. A measurable parameter of vibration (e.g. frequency) is indicative of mass of a vibrating region. Mass change caused by wafer treatment is reflected in changes in vibration measurements taken before and after that treatment. The apparatus includes a wafer support e.g. projecting ledge (19), a vibration exciting device e.g. contact probe (28) or pressure differential applicator, and a measurement device e.g. frequency sensor (62).Type: ApplicationFiled: March 4, 2008Publication date: June 17, 2010Inventors: Robert John Wilby, Adrian Kiermasz
-
Publication number: 20080087106Abstract: Measuring apparatus for monitoring the position of the centre of mass of a semiconductor wafer is disclosed. The apparatus includes a wafer support (14) with a ledge for supporting an edge of a wafer (2) when it is lifted at a detection point by a probe (16). The probe (16) is connected to a force sensor (18) which senses a force due to a moment of the wafer about a fulcrum (4) on the wafer support (14). Moment measurements are taken at a plurality of detection points and a processing unit calculates the position of the centre of mass from the moment measurements. Changes in wafer mass distribution (e.g. due to faulty treatment steps) which cause movement of the centre of mass can be detected.Type: ApplicationFiled: October 8, 2007Publication date: April 17, 2008Inventors: Robert John Wilby, Adrian Kiermasz
-
Patent number: 7340372Abstract: In order to determine the dielectric constant of a layer deposited on a semiconductor wafer (2), the density of the layer is obtained. To obtain that density, the wafer (2) without the layer is weighed in a weighing chamber (4) in which a weighing pan (7) supports the wafer on a weighing balance. The weight of the wafer is determined taking into account the buoyancy exerted by the air on the wafer (2). Then the layer is deposited on the wafer (2) and the weighing operation repeated. Alternatively a reference wafer may be used. If the material of the layer is known, the weight of the layer can be used to derive its density using a thickness measurement. Alternatively, if the density is known, the thickness can be obtained.Type: GrantFiled: November 21, 2005Date of Patent: March 4, 2008Assignee: Metryx LimitedInventor: Robert John Wilby
-
Patent number: 7020577Abstract: In order to determine the dielectric constant of a layer deposited on a semiconducotr wafer (2), the density of the layer is obtained. To obtain that density, the wafer (2) without the layer is weighed in a weighing chamber (4) in which a weighing pan (7) supports the wafer on a weighing balance. The weight of the wafer is determined taking into account the buoyancy exerted by the air on the wafer (2). Then the layer is deposited on the wafer (2) and the weighing operation repeated. Alternatively a reference wafer may be used. If the material of the layer is known, the weight of the layer can be used to derive its density using a thickness measurement. Alternatively, if the density is known, the thickness can be obtained.Type: GrantFiled: June 29, 2001Date of Patent: March 28, 2006Assignee: Metryx LimitedInventor: Robert John Wilby
-
Publication number: 20040056356Abstract: This invention relates semiconductor devices incorporating an intermediate etch stop layer between two dielectric layers in which the dielectric constant of each of the layers is k≦3.5 and the etch stop layer has a selectivity of at least 2.5:1 relative to the upper layer. Methods and apparatus for forming nitrogen doped silicon carbide films, for example, for use as etch stop layers are described.Type: ApplicationFiled: July 15, 2003Publication date: March 25, 2004Inventors: John MacNeil, Robert John Wilby, Knut Beekman
-
Patent number: 6627535Abstract: This invention relates semiconductor devices incorporating an intermediate etch stop layer between two dielectric layers in which the dielectric constant of each of the layers is k≦3.5 and the etch stop layer has a selectivity of at least 2.5:1 relative to the upper layer. Methods and apparatus for forming nitrogen doped silicon carbide films, for example, for use as etch stop layers are described.Type: GrantFiled: January 17, 2001Date of Patent: September 30, 2003Assignee: Trikon Holdings Ltd.Inventors: John MacNeil, Robert John Wilby, Knut Beekman