Patents by Inventor Robert Jon MCQUISTON

Robert Jon MCQUISTON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240044290
    Abstract: A gas turbine engine fuel supply system can include a fuel delivery system, a thermal management system, a fuel manifold, and one or more sensors that identify one or more fuel parameters. A fuel control system can be controlled to adjust one or more parameters of the fuel based on data received from the sensors.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Applicant: General Electric Company
    Inventors: Brandon W. Miller, Robert Jon McQuiston, Stefan Joseph Cafaro, Eric Richard Westervelt, Michael A. Benjamin, Joel M. Haynes, Hejie Li
  • Patent number: 11834196
    Abstract: A computing system for an unducted rotor engine with a variable pitch vane assembly in aerodynamic relationship with an unducted rotor assembly, including a sensor-based controller configured to execute a first set of operations and a model-based controller configured to execute a second set of operations. The first set of operations includes obtaining a first signal corresponding to a commanded low spool speed; obtaining a second signal indicative of a pitch angle corresponding to thrust output from the unducted rotor assembly and variable pitch vane assembly; generating a pitch feedback signal corresponding to a commanded adjustment to the pitch angle based at least on one or both of a variable blade pitch angle or a variable vane pitch angle. The second set of operations include obtaining a desired thrust output via a throttle input; determining, at least via a power management block, a commanded thrust output signal; receiving the commanded thrust output signal; and generating an output signal.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: December 5, 2023
    Assignee: General Electric Company
    Inventors: Sridhar Adibhatla, Stefan Joseph Cafaro, Robert Jon McQuiston
  • Patent number: 11821366
    Abstract: A gas turbine engine fuel supply system can include a fuel delivery system, a thermal management system, a fuel manifold, and one or more sensors that identify one or more fuel parameters. A fuel control system adjusts parameters of the fuel based on data received from the sensors.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: November 21, 2023
    Assignee: General Electric Company
    Inventors: Brandon W. Miller, Robert Jon McQuiston, Stefan Joseph Cafaro, Eric Richard Westervelt, Michael A. Benjamin, Joel M. Haynes, Hejie Li
  • Publication number: 20230358169
    Abstract: A method for operating a hybrid-electric propulsion system of an aircraft, the hybrid-electric propulsion system, the method comprising: sensing data indicative of at least one of an aerodynamic instability, a pressure, or a temperature within the HP compressor and the LP compressor of the gas turbine engine; identifying a aerodynamically unstable compressor by determining that conditions within one of the HP compressor or the LP compressor are within a threshold of a stall condition based at least in part on the sensed data within the HP compressor and the LP compressor of the gas turbine engine, the one of the HP compressor or the LP compressor that is determined to be within the threshold of a stall condition being the aerodynamically unstable compressor; and transferring power, via the one or more electric machines, to the aerodynamically unstable compressor in order to clear the stall condition.
    Type: Application
    Filed: July 18, 2023
    Publication date: November 9, 2023
    Inventors: David Alexander Hiett, David Marion Ostdiek, Stefan Joseph Cafaro, Robert Jon McQuiston
  • Patent number: 11788470
    Abstract: A method is provided of controlling a cooled cooling air system for an aeronautical gas turbine engine. The method includes: receiving data indicative of an ambient condition of the aeronautical gas turbine engine, data indicative of a deterioration parameter of the aeronautical gas turbine engine, data indicative of an operating condition of the aeronautical gas turbine engine, or a combination thereof; and modifying a cooling capacity of the cooled cooling air system in response to the received data indicative of the ambient condition of the aeronautical gas turbine engine, data indicative of the deterioration parameter of the aeronautical gas turbine engine, data indicative of an operating condition of the aeronautical gas turbine engine, or the combination thereof.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: October 17, 2023
    Assignee: General Electric Company
    Inventors: Jeffrey Douglas Rambo, Brandon Wayne Miller, Kevin Robert Feldmann, Patrick Michael Marrinan, Robert Jon McQuiston
  • Publication number: 20230265796
    Abstract: A gas turbine engine fuel supply system can include a fuel delivery system, a thermal management system, a fuel manifold, and one or more sensors that identify one or more fuel parameters. A fuel control system adjusts parameters of the fuel based on data received from the sensors.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 24, 2023
    Applicant: General Electric Company
    Inventors: Brandon W. Miller, Robert Jon McQuiston, Stefan Joseph Cafaro, Eric Richard Westervelt, Michael A. Benjamin, Joel M. Haynes, Hejie Li
  • Patent number: 11732600
    Abstract: A gas turbine engine actuation system includes a gas turbine engine, an actuation device, an actuator, and a power source. The gas turbine engine includes a compressor section, a combustion section, a turbine section, and a rotating shaft. The actuation device is operable with the compressor section, combustion section, turbine section, or a combination thereof. The actuator is operationally coupled to the actuation device and includes an electric actuator configured to convert electrical current into mechanical power. The power source is configured to supply electrical current to the actuator, alone or in tandem with a hydraulic actuator.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: August 22, 2023
    Assignee: General Electric Company
    Inventors: David Alexander Hiett, Stefan Joseph Cafaro, Robert Jon McQuiston, David Marion Ostdiek
  • Patent number: 11725594
    Abstract: A method for operating a hybrid-electric gas turbine engine is provided. The method includes: receiving data indicative of an actual rotational speed of a shaft; calculating an error between the actual rotational speed of the shaft and a commanded rotational speed of the shaft; providing the calculated error to a fuel flow control circuit operable with a fuel delivery system of the hybrid-electric propulsion engine; providing the calculated error to an electric machine control circuit operable with an electric machine of the hybrid-electric propulsion engine, the electric machine drivingly coupled to the shaft; and modifying a torque on the shaft from the electric machine with the electric machine control circuit based on the calculated error.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: August 15, 2023
    Assignee: General Electric Company
    Inventors: Robert Jon McQuiston, Cameron Roy Nott, Stefan Joseph Cafaro
  • Patent number: 11668241
    Abstract: A gas turbine engine fuel supply system can include a fuel delivery system, a thermal management system, a fuel manifold, and one or more sensors that identify one or more fuel parameters. A fuel control system adjusts parameters of the fuel based on data received from the sensors.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: June 6, 2023
    Assignee: General Electric Company
    Inventors: Brandon W. Miller, Robert Jon McQuiston, Stefan Joseph Cafaro, Eric Richard Westervelt, Michael A. Benjamin, Joel M. Haynes, Hejie Li
  • Publication number: 20230150681
    Abstract: Systems and methods for controlling an unducted turbofan engine to limit noise. The unducted turbofan engine may include an unducted fan drivingly coupled with a low-pressure turbine and a plurality of unducted outlet guide vanes. The unducted fan may include a plurality of fan blades and a pitch angle of the fan blades may be variable. A pitch angle of the unducted outlet guide vanes may be variable. A controller is configured to control the engine to limit noise based on a noise sensitive condition.
    Type: Application
    Filed: November 15, 2021
    Publication date: May 18, 2023
    Inventors: Kishore Ramakrishnan, Trevor Howard Wood, Stefan Joseph Cafaro, Robert Jon McQuiston, David Marion Ostdiek, Timothy Richard DePuy, Trevor Goerig, Eric Richard Westervelt
  • Publication number: 20220403783
    Abstract: A gas turbine engine fuel supply system can include a fuel delivery system, a thermal management system, a fuel manifold, and one or more sensors that identify one or more fuel parameters. A fuel control system adjusts parameters of the fuel based on data received from the sensors.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Applicant: General Electric Company
    Inventors: Brandon W. Miller, Robert Jon McQuiston, Stefan Joseph Cafaro, Eric Richard Westervelt, Michael A. Benjamin, Joel M. Haynes, Hejie Li
  • Publication number: 20220403784
    Abstract: A gas turbine engine fuel supply system can include a fuel delivery system, a thermal management system, a fuel manifold, and one or more sensors that identify one or more fuel parameters. A fuel control system adjusts parameters of the fuel based on data received from the sensors.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Applicant: General Electric Company
    Inventors: Brandon W. Miller, Robert Jon McQuiston, Stefan Joseph Cafaro, Eric Richard Westervelt, Michael A. Benjamin, Joel M. Haynes, Hejie Li
  • Publication number: 20220275757
    Abstract: A method is provided of controlling a cooled cooling air system for an aeronautical gas turbine engine. The method includes: receiving data indicative of an ambient condition of the aeronautical gas turbine engine, data indicative of a deterioration parameter of the aeronautical gas turbine engine, data indicative of an operating condition of the aeronautical gas turbine engine, or a combination thereof; and modifying a cooling capacity of the cooled cooling air system in response to the received data indicative of the ambient condition of the aeronautical gas turbine engine, data indicative of the deterioration parameter of the aeronautical gas turbine engine, data indicative of an operating condition of the aeronautical gas turbine engine, or the combination thereof.
    Type: Application
    Filed: March 1, 2021
    Publication date: September 1, 2022
    Inventors: Jeffrey Douglas Rambo, Brandon Wayne Miller, Kevin Robert Feldmann, Patrick Michael Marrinan, Robert Jon McQuiston
  • Publication number: 20220252007
    Abstract: A method for operating a hybrid-electric propulsion system of an aircraft, the hybrid-electric propulsion system, the method comprising: sensing data indicative of at least one of an aerodynamic instability, a pressure, or a temperature within the HP compressor and the LP compressor of the gas turbine engine; identifying a aerodynamically unstable compressor by determining that conditions within one of the HP compressor or the LP compressor are within a threshold of a stall condition based at least in part on the sensed data within the HP compressor and the LP compressor of the gas turbine engine, the one of the HP compressor or the LP compressor that is determined to be within the threshold of a stall condition being the aerodynamically unstable compressor; and transferring power, via the one or more electric machines, to the aerodynamically unstable compressor in order to clear the stall condition.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 11, 2022
    Inventors: David Alexander Hiett, David Marion Ostdiek, Stefan Joseph Cafaro, Robert Jon McQuiston
  • Publication number: 20220251966
    Abstract: A gas turbine engine actuation system includes a gas turbine engine, an actuation device, an actuator, and a power source. The gas turbine engine includes a compressor section, a combustion section, a turbine section, and a rotating shaft. The actuation device is operable with the compressor section, combustion section, turbine section, or a combination thereof. The actuator is operationally coupled to the actuation device and includes an electric actuator configured to convert electrical current into mechanical power. The power source is configured to supply electrical current to the actuator, alone or in tandem with a hydraulic actuator.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 11, 2022
    Inventors: David Alexander Hiett, Stefan Joseph Cafaro, Robert Jon McQuiston, David Marion Ostdiek
  • Publication number: 20220065175
    Abstract: A method for operating a hybrid-electric propulsion system of an aircraft, the hybrid-electric propulsion system comprising a gas turbine engine having a compressor and an electric machine coupled to the compressor, the method comprising: sensing data indicative of a pressure within the compressor of the gas turbine engine; determining conditions within the compressor are within a threshold of a stall limit for the compressor based at least in part on the sensed data indicative of the pressure within the compressor of the gas turbine engine; and modifying a torque of the compressor using the electric machine in response to determining the conditions within the compressor are within the threshold of the stall limit for the compressor to reduce a risk of compressor stall.
    Type: Application
    Filed: January 15, 2021
    Publication date: March 3, 2022
    Inventors: Robert Jon McQuiston, Stefan Joseph Cafaro, Paul Robert Gemin
  • Publication number: 20220063826
    Abstract: A method for operating a hybrid-electric propulsion system of an aircraft is provided. The hybrid-electric propulsion system includes a gas turbine engine having a high pressure system, a low pressure system, and an electric machine coupled to one of the high pressure system or low pressure system. The method includes receiving data indicative of an actual or anticipated in-flight shutdown of the gas turbine engine; and adding power to the gas turbine engine through the electric machine in response to receiving data indicative of the actual or anticipated in-flight shutdown of the gas turbine engine.
    Type: Application
    Filed: February 5, 2021
    Publication date: March 3, 2022
    Inventors: David Alexander Hiett, Stefan Joseph Cafaro, David Marion Ostdiek, Robert Jon McQuiston, Paul Robert Gemin, Jeffrey Douglas Rambo
  • Publication number: 20220065177
    Abstract: A method for operating a hybrid-electric gas turbine engine is provided. The method includes: receiving data indicative of an actual rotational speed of a shaft; calculating an error between the actual rotational speed of the shaft and a commanded rotational speed of the shaft; providing the calculated error to a fuel flow control circuit operable with a fuel delivery system of the hybrid-electric propulsion engine; providing the calculated error to an electric machine control circuit operable with an electric machine of the hybrid-electric propulsion engine, the electric machine drivingly coupled to the shaft; and modifying a torque on the shaft from the electric machine with the electric machine control circuit based on the calculated error.
    Type: Application
    Filed: January 22, 2021
    Publication date: March 3, 2022
    Inventors: Robert Jon McQuiston, Cameron Roy Nott, Stefan Joseph Cafaro
  • Publication number: 20220063824
    Abstract: A method is provided for operating a hybrid-electric propulsion system having a first engine, a second engine, a first electric machine coupled to the first engine, and a second electric machine coupled to one of the first engine or the second engine. The method includes: receiving data indicative of a first engine operating parameter, a second engine operating parameter, or both; determining a first engine operating parameter margin, a second parameter operating margin, or both; determining a load share for the first engine, the second engine, or both, or between the first engine and the second engine based on the first engine operating parameter margin, the second engine operating parameter margin, or both; and transferring a first amount of power to or from the first electric machine and a second amount of power to or from the second electric machine in response to the determined load share.
    Type: Application
    Filed: January 15, 2021
    Publication date: March 3, 2022
    Inventors: David Alexander Hiett, Stefan Joseph Cafaro, Robert Jon McQuiston, David Marion Ostdiek
  • Publication number: 20210340938
    Abstract: An engine system is provided for an aircraft having an engine and an engine controller. The engine system includes: an electric machine configured to be in electrical communication with the engine controller for powering the engine controller; and a fuel oxygen reduction unit defining a liquid fuel flowpath and a stripping gas flowpath and configured to transfer an oxygen content of a fuel flow through the liquid fuel flowpath to a stripping gas flow through the stripping gas flowpath, the fuel oxygen reduction unit also in electrical communication with the electric machine such that the electric machine powers at least in part the fuel oxygen reduction unit.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 4, 2021
    Inventors: Brandon Wayne Miller, Robert Jon McQuiston, David Justin Brady