Patents by Inventor Robert K. Eastlack

Robert K. Eastlack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12076251
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAI”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: September 3, 2024
    Assignee: SI-Bone Inc.
    Inventors: Ali H. Mesiwala, Mark A. Reiley, Paul M. Sand, Bret W. Schneider, Scott A. Yerby, Christopher I. Shaffrey, Robert K. Eastlack, Juan S. Uribe, Isador H. Lieberman, Frank M. Phillips, David W. Polly, Phillip J. Singer, Jeffrey B. Phelps, Derek P. Lindsey, Patrick Kahn, Nikolas F. Kerr, Francois Follini
  • Publication number: 20230270559
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAT”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 31, 2023
    Inventors: Ali H. MESIWALA, Mark A. REILEY, Paul M. SAND, Bret W. SCHNEIDER, Scott A. YERBY, Christopher I. SHAFFREY, Robert K. EASTLACK, Juan S. URIBE, Isador H. LIEBERMAN, Frank M. PHILLIPS, David W. POLLY, Phillip J. SINGER, Jeffrey B. PHELPS, Derek P. LINDSEY, Patrick KAHN, Nikolas F. KERR, Francois FOLLINI
  • Patent number: 11678997
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAI”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: June 20, 2023
    Assignee: SI-Bone Inc.
    Inventors: Ali H. Mesiwala, Mark A. Reiley, Paul M. Sand, Bret W. Schneider, Scott A. Yerby, Christopher I. Shaffrey, Robert K. Eastlack, Juan S. Uribe, Isador H. Lieberman, Frank M. Phillips, David W. Polly, Phillip J. Singer, Jeffrey B. Phelps, Derek P. Lindsey, Patrick Kahn, Nikolas F. Kerr, Francois Follini
  • Publication number: 20220354665
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAI”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Application
    Filed: January 28, 2022
    Publication date: November 10, 2022
    Inventors: Ali H. MESIWALA, Mark A. REILEY, Paul M. SAND, Bret W. SCHNEIDER, Scott A. YERBY, Christopher I. SHAFFREY, Robert K. EASTLACK, Juan S. URIBE, Isador H. LIEBERMAN, Frank M. PHILLIPS, David W. POLLY, Phillip J. SINGER, Jeffrey B. PHELPS, Derek P. LINDSEY, Patrick KAHN, Nikolas F. KERR, Francois FOLLINI
  • Publication number: 20220287848
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAI”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Application
    Filed: January 28, 2022
    Publication date: September 15, 2022
    Inventors: Ali H. MESIWALA, Mark A. REILEY, Paul M. SAND, Bret W. SCHNEIDER, Scott A. YERBY, Christopher I. SHAFFREY, Robert K. EASTLACK, Juan S. URIBE, Isador H. LIEBERMAN, Frank M. PHILLIPS, David W. POLLY, Phillip J. SINGER, Jeffrey B. PHELPS, Derek P. LINDSEY, Patrick KAHN, Nikolas F. KERR, Francois FOLLINI
  • Patent number: 11369419
    Abstract: The present invention generally relates to bone implants. More specifically, the present invention relates to bone implants used for the fixation and or fusion of the sacroiliac joint and/or the spine. For example, a system for fusing and or stabilizing a plurality of bones is provided. The system includes an implant structure having a shank portion, a body portion and a head portion. The body portion is coupled to the shank portion and is configured to be placed through a first bone segment, across a bone joint or fracture and into a second bone segment. The body portion is configured to allow for bony on-growth, ingrowth and through-growth. The head portion is coupled to the proximal end of the shank portion and is configured to couple the shank portion to a stabilizing rod. Methods of use are also disclosed.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: June 28, 2022
    Assignee: SI-Bone Inc.
    Inventors: Ali H. Mesiwala, Frank M. Phillips, David W. Polly, Phillip J. Singer, Jeffrey B. Phelps, Derek P. Lindsey, Patrick Kahn, Nikolas F. Kerr, Mark A. Reiley, Paul M. Sand, Bret W. Schneider, Scott A. Yerby, Christopher I. Shaffrey, Robert K. Eastlack, Juan S. Uribe, Isador H. Lieberman
  • Patent number: 11234830
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAI”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: February 1, 2022
    Assignee: SI-Bone Inc.
    Inventors: Ali H. Mesiwala, Mark A. Reiley, Paul M. Sand, Bret W. Schneider, Scott A. Yerby, Christopher I. Shaffrey, Robert K. Eastlack, Juan S. Uribe, Isador H. Lieberman, Frank M. Phillips, David W. Polly, Phillip J. Singer, Jeffrey B. Phelps, Derek P. Lindsey, Patrick Kahn, Nikolas F. Kerr, Francois Follini
  • Publication number: 20200268525
    Abstract: Bone implants, including methods of use and assembly. The bone implants, which are optionally composite implants, generally include a distal anchoring region and a growth region that is proximal to the distal anchoring region. The distal anchoring region can have one or more distal surface features that adapt the distal anchoring region for anchoring into iliac bone. The growth region can have one or more growth features that adapt the growth region to facilitate at least one of bony on-growth, in-growth, or through-growth. The implants may be positioned along a posterior sacral alar-iliac (“SAI”) trajectory. The implants may be coupled to one or more bone stabilizing constructs, such as rod elements thereof.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Ali H. MESIWALA, Mark A. REILEY, Paul M. SAND, Bret W. SCHNEIDER, Scott A. YERBY, Christopher I. SHAFFREY, Robert K. EASTLACK, Juan S. URIBE, Isador H. LIEBERMAN, Frank M. PHILLIPS, David W. POLLY, Phillip J. SINGER, Jeffrey B. PHELPS, Derek P. LINDSEY, Patrick KAHN, Nikolas F. KERR, Francois FOLLINI
  • Publication number: 20200261240
    Abstract: The present invention generally relates to bone implants. More specifically, the present invention relates to bone implants used for the fixation and or fusion of the sacroiliac joint and/or the spine. For example, a system for fusing and or stabilizing a plurality of bones is provided. The system includes an implant structure having a shank portion, a body portion and a head portion. The body portion is coupled to the shank portion and is configured to be placed through a first bone segment, across a bone joint or fracture and into a second bone segment. The body portion is configured to allow for bony on-growth, ingrowth and through-growth. The head portion is coupled to the proximal end of the shank portion and is configured to couple the shank portion to a stabilizing rod. Methods of use are also disclosed.
    Type: Application
    Filed: February 14, 2019
    Publication date: August 20, 2020
    Inventors: Ali H. MESIWALA, Mark A. REILEY, Paul M. SAND, Bret W. SCHNEIDER, Scott A. YERBY, Christopher I. SHAFFREY, Robert K. EASTLACK, Juan S. URIBE, Isador H. LIEBERMAN, Frank M. PHILLIPS, David W. POLLY, Phillip J. SINGER, Jeffrey B. PHELPS, Derek P. LINDSEY, Patrick KAHN, Nikolas F. KERR
  • Patent number: 9707099
    Abstract: A method and devices for placing spinal implants including placing the implants completely within a spaced defined between adjacent vertebral bodies where the implants are supported by the cortical bone of the vertebral bodies. An insertion instrument places the implants in pairs with a variable-sized space placed in between. The implants are made of a biocompatible material and are particularly suited for anterior lumbar interbody fusion surgery. The spinal implants used to facilitate spinal fusion, correct deformities, stabilize and strengthen the spine.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 18, 2017
    Assignee: NuTech Spine, Inc.
    Inventors: Jeffrey S. Schiffman, Robert K. Eastlack, Richard S. Maly, Howard P. Walthall, Jr.
  • Publication number: 20140277502
    Abstract: A method and devices for placing spinal implants including placing the implants completely within a spaced defined between adjacent vertebral bodies where the implants are supported by the cortical bone of the vertebral bodies. An insertion instrument places the implants in pairs with a variable-sized space placed in between. The implants are made of a biocompatible material and are particularly suited for anterior lumbar interbody fusion surgery. The spinal implants used to facilitate spinal fusion, correct deformities, stabilize and strengthen the spine.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: NuTech Spine, Inc.
    Inventors: Jeffrey S. Schiffman, Robert K. Eastlack, Richard S. Maly, Howard P. Walthall, JR.
  • Publication number: 20130317312
    Abstract: A positionable surgical retractor comprises a retractor blade and a coupling element. The retractor has a first surface adapted to engage and retract tissue away from a surgical field. The coupling element is coupled to the retractor blade or disposed in a wall of the retractor, and may be coupled to an anchoring element. The retractor is positionable relative to the anchor so as to engage and retract the tissue.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 28, 2013
    Applicant: Invuity, Inc.
    Inventors: Robert K. Eastlack, Alex Vayser
  • Patent number: D747484
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: January 12, 2016
    Assignee: NUTECH SPINE, INC.
    Inventors: Jeffrey S. Schiffman, Robert K. Eastlack, Richard S. Maly, Howard P. Walthall, Jr.