Patents by Inventor Robert Kaliski

Robert Kaliski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11430905
    Abstract: A hetero-junction phototransistor with a first layer comprising an InP N buffer and substrate, a second layer comprising an InGaAs N collector on the InP N buffer and substrate, a plurality of InGaAs P bases on the InGaAs N collector layer, and a plurality of InAIAs N emitters is described. Each emitter of the plurality of InAIAs N emitters is on a different base of the plurality of InGaAs P bases. The hetero-junction phototransistor comprises a plurality of InGaAs N+ caps, wherein each cap of the plurality of InGaAs N+ caps is on a different emitter of the plurality of InAIAs N emitters. The hetero-junction phototransistor comprises one or more electrical contacts. Each of the one or more electrical contacts is on a different cap of the plurality of InGaAs N+ caps.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: August 30, 2022
    Assignee: Ball Aerospace & Technologies Corp.
    Inventors: Robert Kaliski, Robert G. Marshalek
  • Patent number: 10404403
    Abstract: Free-space communication systems and methods are provided. The systems include a transmitter that combines multiple sets of radio-frequency-modulated optical carrier frequencies for transmission across free space using multiple transmission apertures. Different sets of signals are filtered to form single sideband signals. The different sets of single sideband signals are then combined to form dense wavelength division multiplexed signals. In addition, combined sets of signals of different polarizations can be combined. A receiver can include a single receive aperture.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: September 3, 2019
    Assignee: Ball Aerospace & Technologies Corp.
    Inventors: John R. Troeltzsch, Colin H. Wilson, Robert M. Pierce, Holden Chase, Brian Primeau, Robert Kaliski, Bevan D. Staple, Robert Marshalek
  • Publication number: 20180270010
    Abstract: Free-space communication systems and methods are provided. The systems include a transmitter that combines multiple sets of radio-frequency-modulated optical carrier frequencies for transmission across free space using multiple transmission apertures. Different sets of signals are filtered to form single sideband signals. The different sets of single sideband signals are then combined to form dense wavelength division multiplexed signals. In addition, combined sets of signals of different polarizations can be combined. A receiver can include a single receive aperture.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 20, 2018
    Applicant: Ball Aerospace & Technologies Corp.
    Inventors: John R. Troeltzsch, Colin H. Wilson, Robert M. Pierce, Holden Chase, Brian Primeau, Robert Kaliski, Bevan D. Staple, Robert Marshalek
  • Patent number: 5141893
    Abstract: `Unintentionally` doped P type GaAs is grown on silicon by a metal organic chemical vapor deposition process in which the molecular ratio of arsenic to gallium in the growth ambient is reduced to a value that is sufficiently low to cause the creation of donor (As) site vacancies in the grown GaAs layer, which become occupied by acceptor (carbon) atoms in the metal organic compound, thereby resulting in the formation of a buffer GaAs layer having a P type majority carrier characteristic. Preferably, the silicon substrate has its growth surface inclined from the [100] plane toward the [011] direction is initially subjected to an MOCVD process (e.g. trimethyl gallium, arsine chemical vapor deposition) at a reduced temperature (e.g. 425.degree. C.) and at atmospheric pressure, to form a thin (400 Angstroms) nucleation layer. During this growth step the Group V/Group III mole ratio (of arsenic to gallium) is maintained at an intermediate value. The temperature is then ramped to 630.degree. C.
    Type: Grant
    Filed: February 20, 1991
    Date of Patent: August 25, 1992
    Assignee: Ford Microelectronics
    Inventors: Chris R. Ito, David McIntyre, Robert Kaliski, Milton Feng
  • Patent number: 5141569
    Abstract: `Unintentionally` doped P type GaAs is grown on silicon by a metal organic chemical vapor deposition process in which the molecular ratio of arsenic to gallium in the growth ambient is reduced to a value that is sufficiently low to cause the creation of donor (As) site vacancies in the grown GaAs layer, which become occupied by acceptor (carbon) atoms in the metal organic compound, thereby resulting in the formation of a buffer GaAs layer having a P type majority carrier characteristic. Preferably, the silicon substrate has its growth surface inclined from the [100] plane toward the [011] direction is initially subjected to an MOCVD process (e.g. trimethyl gallium, arsine chemical vapor deposition) at a reduced temperature (e.g. 425.degree. C.) and at atmospheric pressure, to form a thin (400 Angstroms) nucleation layer. During this growth step the Group V/Group III mole ratio (of arsenic to gallium) is maintained at an intermediate value. The temperature is then ramped to 630.degree. C.
    Type: Grant
    Filed: April 4, 1990
    Date of Patent: August 25, 1992
    Assignee: Ford Microelectronics
    Inventors: Chris R. Ito, David McIntyre, Robert Kaliski, Milton Feng