Patents by Inventor Robert Kline-Schoder

Robert Kline-Schoder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6629449
    Abstract: Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: October 7, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robert Kline-Schoder, Patrick J. Magari
  • Patent number: 6467331
    Abstract: Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: October 22, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robert Kline-Schoder, Patrick J. Magari
  • Patent number: 6463785
    Abstract: Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: October 15, 2002
    Assignee: The United States of America as represented by the Adminstrator of the National Aeronautics and Space Adminstration
    Inventors: Robert Kline-Schoder, Patrick J. Magari
  • Patent number: 6457346
    Abstract: Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: October 1, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robert Kline-Schoder, Patrick J. Magari
  • Patent number: 6408679
    Abstract: Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: June 25, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Robert Kline-Schoder, Patrick J. Magari
  • Patent number: 5938612
    Abstract: An ultrasonic transducer array having a plurality of transducer elements, at least some of which have multiple piezoelectric and electrode layers. The resonant frequency of the transducer elements may range from 500 kHz to 300 MHz or more. A single array may have transducer elements of different resonant frequencies, and the array may be sparsely populated. Highest frequencies are typically obtained when the piezoelectric layers are made from vapor deposited PZT in accordance with a disclosed deposition process. The array may have a 1-D configuration, 1.5-D or 2-D, configuration. The array may be positioned in a probe.
    Type: Grant
    Filed: May 5, 1997
    Date of Patent: August 17, 1999
    Assignee: Creare Inc.
    Inventors: Robert Kline-Schoder, Shinzo Onishi
  • Patent number: 5906580
    Abstract: An ultrasonic imaging system capable of transmitting and receiving ultrasound over a wide frequency range, i.e., 500 KHz-300 MHz. Ultrasound may be transmitted from a single transducer array at multiple frequencies simultaneously or sequentially via separate, acoustically isolated transducer elements, each having a unique resonant frequency. Signal-to-noise ratio may be enhanced through use of multiple piezoelectric layer transmit transducer elements and single piezoelectric layer receive transducer elements, both on a single transducer array. Aspect ratios approaching unity for transducer elements of the array may be obtained, which can be used to reduce grating lobes. Sparsely populated transducer arrays are included in the imaging system. Methods of ultrasound imaging and ultrasound therapy obtainable with the present imaging system are included in the invention.
    Type: Grant
    Filed: May 5, 1997
    Date of Patent: May 25, 1999
    Assignee: Creare Inc.
    Inventors: Robert Kline-Schoder, David Kynor, Shinzo Onishi