Patents by Inventor Robert L. Cantrell

Robert L. Cantrell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180072415
    Abstract: In some embodiments, unmanned aerial task systems are provided that include a plurality of unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; propulsion system; and a universal coupler configured to interchangeably couple with and decouple from one of multiple different tool systems each having different functions to be put into use while carried by a UAV, wherein a coupling system of the universal coupler is configured to secure a tool system with the UAV and enable a communication connection between a communication bus and the tool system, and wherein the multiple different tool systems comprise at least a package securing tool system configured to retain and enable transport of a package while being delivered, and a sensor tool system configured to sense a condition and communicate sensor data of the sensed condition to the UAV control circuit over the communication bus.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180074499
    Abstract: Systems, apparatuses, and methods are provided herein for field monitoring. A system for field monitoring comprises a plurality of types of sensor modules, an unmanned vehicle comprising a sensor system, and a control circuit configured to: receive onboard sensor data from the sensor system of the unmanned vehicle, detect an alert condition at a monitored area based on the onboard sensor data, select one or more types of sensor modules from the plurality of types of sensor modules to deploy at the monitored area based on the onboard sensor data, and cause the unmanned vehicle and/or one or more other unmanned vehicles to transport one or more sensor modules of the one or more types of sensor modules to the monitored area and deploy the one or more sensor modules by detaching from the one or more sensor modules at the monitored area.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180074488
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180074518
    Abstract: Systems, apparatuses and methods are provided herein for unmanned flight optimization. A system for unmanned flight optimization comprises a flight system configured to provide locomotion to an unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit coupled to the flight system and the sensor system. The control circuit being configured to: retrieve a task profile for a task assigned to the unmanned aerial vehicle, detect condition parameters of the unmanned aerial vehicle based on the sensor system, determine whether to station the unmanned aerial vehicle based on the task profile and the condition parameters, and deactivate the flight system of the unmanned aerial vehicle while the unmanned aerial vehicle performs the task.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon
  • Publication number: 20180072416
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable UAV to move itself; and wherein a first UAV control circuit of a first UAV of the multiple UAVs, when implementing code stored in memory, is configured to identify, based at least in part on a first task performed using a first tool system temporarily coupled with the first UAV, a set of at least one task to be cooperatively performed by the first UAV and at least a second UAV of the multiple UAVs.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180065747
    Abstract: In some embodiments, methods and systems of dispensing an insecticide to defend a crop-containing area against crop-damaging pests include an unmanned vehicle having a sensor that detects a crop-damaging pest in the crop-containing area and captures pest detection data, and an insecticide output device including at least one insecticide directed at the pest. The unmanned vehicle transmits the captured pest detection data via the network to the computing device and, in response to receipt of the captured pest detection data via the network from the unmanned vehicle, the computing device accesses an electronic database to determine an identity of the at least one pest. Based on the determined identity of the crop-damaging pest, the computing device transmits a control signal to the unmanned vehicle to cause the insecticide output device of the unmanned vehicle to dispense one or more insecticides specific to the identified crop-damaging pest.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180068165
    Abstract: In some embodiments, methods and systems of identifying at least one pest based on crop damage detection in a crop-containing area include an unmanned vehicle including at least one sensor configured to detect at least one type of pest damage on at least one crop in the crop-containing area and to capture pest damage data. An electronic database includes pest damage identity data associated with one or more crop-damaging pests, and a computing device communicates with the unmanned vehicle and the electronic database via a network. The unmanned vehicle transmits the captured pest damage data via the network to the computing device and, in response to receipt of the captured pest damage data from the unmanned vehicle, the computing device accesses the pest damage identity data on the electronic database to determine an identity of one or more pests responsible for the detected type of pest crop damage.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180065749
    Abstract: In some embodiments, methods and systems of pollinating crops include one or more unmanned vehicles including a pollen applicator configured to collect pollen from a flower of a first crop and to apply the pollen collected from the flower of the first crop onto a flower of a second crop and a sensor configured to detect presence of the pollen applied to the flower of the second crop by the pollen applicator to verify that the pollen collected from the flower of the first crop by the pollen applicator was successfully applied by the pollen applicator onto the flower of the second crop.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180064049
    Abstract: In some embodiments, methods and systems of pollinating crops in a crop-containing area include at least one unmanned vehicle having a receptacle including pollen, a pollen dispenser configured to dispense the pollen from the receptacle onto the crops, and a sensor configured to detect presence of the pollen dispensed from the at least one pollen dispenser on the crops and interpret the presence of the pollen dispensed from the at least one pollen dispenser on the crops as a verification that the pollen dispensed from the at least one pollen dispenser was successfully applied to the crops.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180068164
    Abstract: In some embodiments, methods and systems of identifying at least one pest in a crop-containing area include an unmanned vehicle including a visible light video camera configured to detect a pest in the crop-containing area and to capture first pest detection data and an infrared video camera configured to detect a pest in the crop-containing area and to capture second pest detection data.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180064094
    Abstract: In some embodiments, methods and systems of defending a crop-containing area against crop-damaging pests include an unmanned aerial vehicle including a sensor that detects one or more pests in the crop-containing area and an output device configured to eliminate the pest from the crop-containing area. One or more docking stations configured to accommodate the UAV are provided. A computing device configured to communicate with the UAV and the docking station over a network is provided. The UAV is configured to send pest detection data captured by a sensor of the UAV while patrolling the crop-containing area. In return, the computing device is configured to send a signal to the UAV to indicate instructions to the UAV as to how to move or activate the output device in order to eliminate the detected pest from the crop-containing area.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20170300956
    Abstract: Some embodiments provide a retail product coupon offer distribution system, comprising: a customer profile database comprising customer profiles comprises a set of customer partiality vectors; a product profile database comprising product profiles each comprising a set of product partiality vectors; and a product management control circuit configured to: identify a set of customers having a customer partiality vector that has a threshold alignment with at least one product partiality vector; and for each customer of the set, customizes a coupon offer relative to the first product that is distinct for each customer.
    Type: Application
    Filed: April 14, 2017
    Publication date: October 19, 2017
    Inventors: Robert L. Cantrell, Bruce W. Wilkinson, Todd D. Mattingly
  • Patent number: 4761903
    Abstract: Pictures are displayed by means of a frame comprised of a light-transmissive rigid plate and a flexible water-impermeable sealing sheet. The picture is placed on the rear face of the rigid plate. The picture is then sealed onto the rigid plate by a flexible water-impermeable sheet having an adhesive coating on the face of the sheet which contacts the picture. The picture is viewed through the front face of the rigid plate.
    Type: Grant
    Filed: December 5, 1986
    Date of Patent: August 9, 1988
    Inventor: Robert L. Cantrell
  • Patent number: 4039060
    Abstract: A stamping press system, the press having a ram, a driving means for the ram, and an electrically energizable ram control device for causing the driving means to drive the ram through a stamping cycle. The press is guarded by a barrier movable between an open position permitting operator access to the point of stamping operation and a closed position barring such access. A press trip control for the system has a pair of actuators, one for each hand of the operator. Upon their concurrent actuation, the actuators cause movement of the barrier to the closed position and energization of the ram control device initiating a stamping cycle. Provision is included for preventing such energization thereby preventing a stamping cycle if the barrier is not closed. Circuitry of the system prevents re-energization of the ram control device, thus preventing a further cycle until the operator has removed both hands from the actuators.
    Type: Grant
    Filed: April 16, 1975
    Date of Patent: August 2, 1977
    Assignee: Essex Cryogenics Industries, Inc.
    Inventors: Roy G. Williams, Robert L. Cantrell, Jr.