Patents by Inventor Robert L. Lingle, Jr.

Robert L. Lingle, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9709732
    Abstract: Described is a technique for the design and manufacture of MMFs. Designs are implemented so as to limit the maximum variation in z(r, ?) with respect to wavelength, where z(r, ?) is the dielectric constant weighted by the square of the wavelength. MMFs for use in CWDM applications are specifically described.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: July 18, 2017
    Assignee: OFS FITEL, LLC
    Inventors: Kasyapa Balemarthy, James W Fleming, Jinkee Kim, Robert L Lingle, Jr., Roman Shubochkin, Durgesh Vaidya, Man F Yan
  • Publication number: 20160370540
    Abstract: Described is a technique for the design and manufacture of MMFs. Designs are implemented so as to limit the maximum variation in z(r, ?) with respect to wavelength, where z(r, ?) is the dielectric constant weighted by the square of the wavelength. MMFs for use in CWDM applications are specifically described.
    Type: Application
    Filed: January 30, 2015
    Publication date: December 22, 2016
    Applicant: OFS Fitel, LLC
    Inventors: Kasyapa Balemarthy, James W Fleming, Jinkee Kim, Robert L Lingle, Jr., Roman Shubochkin, Durgesh Vaidya, Man F Yan
  • Patent number: 9116279
    Abstract: Certain embodiments of the invention may include optimized trench-assisted ultra large area (ULA) optical fibers. According to an example embodiment of the invention, a trench-assisted optical fiber, optimized for microbend frontier (MBF) performance is provided. The optical fiber includes a core region having a longitudinal axis, a shelf region surrounding said core region, a cladding region surrounding said shelf region, said core and shelf and cladding regions configured to support and guide the propagation of signal light in a fundamental transverse mode in said core and shelf regions in the direction of said axis. The optical fiber further includes a core effective area (Aeff) of between 135 ?m2 and about 170 ?m2; a relative effective index difference (Neff) of greater than about 0.08%; a loss at 1550 nm of less than 0.180 dB/km; and a microbend frontier (MBF) distance of less than about 90%.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: August 25, 2015
    Inventors: Robert L Lingle, Jr., David W Peckham
  • Patent number: 8682127
    Abstract: Described is a modular method of making an optical fiber comprising a core and a cladding configured to support and guide a fundamental transverse mode, the cladding including (i) an outer cladding having an index nout less than the index n1 of the core, (ii) an inner cladding having an index n2<nout, (iii) a pedestal having an index n4?nout, (iv) an inner trench disposed between the inner cladding and the pedestal, the inner trench having an index n3<<n4, and (iv) an outer trench disposed between the pedestal and the outer cladding, the outer trench having an index n5<n4 and relatively close to nout. To suppress unwanted HOMs the pedestal is configured to resonantly couple at least one unwanted transverse mode of the core (other than the fundamental mode) to at least one transverse mode of the pedestal.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: March 25, 2014
    Assignee: OFS Fitel, LLC
    Inventors: John M. Fini, Robert L. Lingle, Jr., Yi Sun