Patents by Inventor Robert L. McDade

Robert L. McDade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9308076
    Abstract: A high strength porous biphasic polymeric reinforcement material manufactured by a compression and/or sintering process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: April 12, 2016
    Assignee: KENSEY NASH CORPORATION
    Inventors: Timothy A. Ringeisen, Robert L. McDade
  • Patent number: 8691136
    Abstract: A device is formed by the process into a bone screw or fastener, wherein the head has a degree of polymer alignment and strength, and wherein the shank has a higher degree of polymer alignment and strength. In practice of the present invention, the polymer slug is pressed into the die cavity by the actuation of ram press, causing the slug to conform to the die cavity. Through this process, the polymer molecular orientation is aligned to different degrees, in different zones of the device.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: April 8, 2014
    Assignee: Kensey Nash Corporation
    Inventors: Joseph DeMeo, Patrick E. Heam, Robert L. McDade
  • Publication number: 20130282140
    Abstract: A high strength porous biphasic polymeric reinforcement material manufactured by a compression and/or sintering process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Application
    Filed: March 5, 2013
    Publication date: October 24, 2013
    Inventors: Timothy A. Ringeisen, Robert L. Mcdade
  • Patent number: 8445554
    Abstract: A high strength porous polymeric material manufactured by a compression process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 21, 2013
    Assignee: Kensey Nash Corporation
    Inventors: Timothy A. Ringeisen, Amanda Turner, Joseph DeMeo, Patrick E. Hearn, Robert L. McDade
  • Patent number: 8389588
    Abstract: A high strength porous biphasic polymeric reinforcement material manufactured by a compression and/or sintering process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: March 5, 2013
    Assignee: Kensey Nash Corporation
    Inventors: Timothy A. Ringeisen, Robert L. McDade
  • Publication number: 20130053850
    Abstract: A device is formed by a discontinuous process into a bone screw, plate, or fastener, wherein the device has a degree of polymer alignment and strength, and upon reheating above glass transition temperature of the polymer, the device remains dimensionally stable, as it maintains its dimensions, strength, and degree of polymer orientation. In practice of the present invention, the polymer slug is pressed into the die cavity by the actuation of ram press, causing the slug to conform to the die cavity.
    Type: Application
    Filed: June 30, 2012
    Publication date: February 28, 2013
    Inventors: Joseph DeMeo, Patrick E. Heam, Robert L. McDade, Michael J. Popow
  • Publication number: 20100331979
    Abstract: Tissue implants prepared for the repair of tissues, especially avascular tissues such as cartilage. One embodiment presents an electric potential capable of receiving and accumulating desirable factors or molecules from surrounding fluid when exposed to dynamic loading. In another embodiment the implant promotes tissue conduction by retarding, restricting and controlling cellular invasion through use of gradients until competent tissue forms. Further embodiments of the tissue implants may be formed into a multi-phasic device that provides deep tissue mechanical stimulus by conduction of mechanical and fluid forces experienced at the surface of the implant.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventors: Robert L. McDade, Timothy A. Ringeisen
  • Publication number: 20100305712
    Abstract: A high strength porous polymeric material manufactured by a compression process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Application
    Filed: May 24, 2010
    Publication date: December 2, 2010
    Inventors: Timothy A. Ringeisen, Amanda Turner, Joseph DeMeo, Patrick E. Hearn, Robert L. McDade
  • Publication number: 20100278891
    Abstract: A high strength porous biphasic polymeric reinforcement material manufactured by a compression and/or sintering process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Application
    Filed: October 9, 2009
    Publication date: November 4, 2010
    Inventors: Timothy A. Ringeisen, Robert L. Mcdade
  • Publication number: 20100191292
    Abstract: A device is formed by a discontinuous process into a bone screw, plate, or fastener, wherein the device has a degree of polymer alignment and strength, and upon reheating above glass transition temperature of the polymer, the device remains dimensionally stable, as it maintains its dimensions, strength, and degree of polymer orientation. In practice of the present invention, the polymer slug is pressed into the die cavity by the actuation of ram press, causing the slug to conform to the die cavity.
    Type: Application
    Filed: December 30, 2009
    Publication date: July 29, 2010
    Inventors: Joseph DeMeo, Patrick E. Hearn, Robert L. McDade
  • Patent number: 7723395
    Abstract: A high strength porous polymeric material manufactured by a compression process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: May 25, 2010
    Assignee: Kensey Nash Corporation
    Inventors: Timothy A. Ringeisen, Amanda Turner, Joseph DeMeo, Patrick E. Hearn, Robert L. McDade
  • Patent number: 7378144
    Abstract: A device is formed by the process into a bone screw or fastener, wherein the head has a degree of polymer alignment and strength, and wherein the shank has a higher degree of polymer alignment and strength. In practice of the present invention, the polymer slug is pressed into the die cavity by the actuation of ram press, causing the slug to conform to the die cavity. Through this process, the polymer molecular orientation is aligned to different degrees, in different zones of the device.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: May 27, 2008
    Assignee: Kensey Nash Corporation
    Inventors: Joseph DeMeo, Patrick E. Hearn, Robert L. McDade
  • Patent number: 4252158
    Abstract: An improved strap tensioning tool, which is particularly adopted for use with non-metallic strap, in which the free end portion of a strap laced about an article which is to be strapped is gripped between an anvil and a wedge-shaped clamp member while the feed portion of such strap is engaged with a tension-applying means. The clamp member is floating supported for effectively gripping the strap during the initial tensioning thereof, regardless of the strap thickness, and a single operating lever serves to actuate the tensioning-applying means, facilitate tensioning of the strap free end portion after such portion is connected to the tensioned feed portion thereof, effect severance of the applied strap from a supply, and release of the clamp member.
    Type: Grant
    Filed: July 6, 1979
    Date of Patent: February 24, 1981
    Assignee: FMC Corporation
    Inventor: Robert L. McDade