Patents by Inventor Robert L. Memmen

Robert L. Memmen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10801338
    Abstract: An air cooled integrally bladed rotor with single crystals turbine rotor blades having cooling air passages formed into an equiax rotor disk, where a mold having expendable Molybdenum tooling and reusable molybdenum tooling is used to form the IBR. An annular blade ring with openings is used to secure the single crystal rotor blades within the mold, and a number of tube tools are inserted into a bottom end of each blade that forms a cooling air supply passage within the rotor disk. Two molybdenum circular shaped hubs are used to secure a bottom end of the tube tools with the mold. The mold is filled with metal powder and high pressure is used to solidify the powder to form the IBR. Expendable tooling is removed using sublimation when exposed to oxygen. Reusable tooling is reused to form additional IBRs.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: October 13, 2020
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: Robert L Memmen
  • Patent number: 10794190
    Abstract: An air cooled integrally bladed rotor with bore entry cooling holes for a small gas turbine engine cast using a ceramic core having an axial bore forming piece with a plurality of radial extending spokes that end in an annular ring to form cooling air supply passages for air cooled turbine blades. Bulbous chambers are formed in a circumferential cooling air supply channel formed below each blade, where cooling air holes are drilled from a tip of each blade and into the bulbous chambers. The radial spokes have an elliptical cross sectional shape with a major axis perpendicular to a rotational axis of the central bore of the IBR. A spacing of the inlet openings in the bore are minimized to reduce stress.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: October 6, 2020
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Robert L Memmen, William L Plank
  • Patent number: 10731485
    Abstract: An air cooled integrally bladed rotor with single crystals turbine rotor blades having cooling air passages formed into an equiax rotor disk, where a mold having expendable Molybdenum tooling and reusable molybdenum tooling is used to form the IBR. An annular blade ring with openings is used to secure the single crystal rotor blades within the mold, and a number of tube tools are inserted into a bottom end of each blade that forms a cooling air supply passage within the rotor disk. Two molybdenum circular shaped hubs are used to secure a bottom end of the tube tools with the mold. The mold is filled with metal powder and high pressure is used to solidify the powder to form the IBR. Expendable tooling is removed using sublimation when exposed to oxygen. Reusable tooling is reused to form additional IBRs.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: August 4, 2020
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: Robert L Memmen
  • Patent number: 10024170
    Abstract: An integrally bladed rotor with an axial bore having either an inward dishing shape or an axial straight shape with an annular inward projection in which radial cooling holes having an elliptical cross sectional shape are formed, where the radial cooling holes have an elliptical cross sectional shape with a major axis perpendicular to the axial bore in order to reduce stress near an inlet opening of the radial holes in order to increase the LCF life of the IBR. The radial cooling holes discharge into a circumferential channel that is connected to cooling holes extending in the rotor blades.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: July 17, 2018
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Robert L Memmen, Wesley D Brown
  • Patent number: 10024190
    Abstract: A ceramic core used to cast and cooling circuit in a thin wall turbine airfoil, where the ceramic core includes a row of metering and impingement forming pieces that discharge into a radial plenum, followed by a row of pedestals and a row of diffusion channels that then flow into a single discharge slot. The ceramic core has bumpers of both sides to position the core in a wax mold. The metering and impingement holes are offset from the cooling passage in the airfoil wall so that impingement of the hot surface of the wall occurs.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: July 17, 2018
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: Robert L Memmen
  • Patent number: 9991763
    Abstract: A power plant for a small aircraft with a gas turbine engine that drives a number of electric generators, where a gear box transmit power from the engine shaft to the number of generators, the gear box having a single input shaft that drives a number of driven gears with each driven gear having a generator drive shaft that extends out both sides, and an electric generator connected to each side of the drive shaft. A compact arrangement of generators are formed where each generator can be disengaged from the drive shaft to regulate total electrical output or to prevent a damaged generator from causing damage to other parts of the system or aircraft.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: June 5, 2018
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: James P Downs, Robert L Memmen
  • Patent number: 9654161
    Abstract: A process for testing a turbine of a gas turbine engine at high altitudes, where a large volume of compressed air is stored in a large reservoir of at least 10,000 m3 such as an underground storage cavern, compressed air from the storage reservoir is passed through heat exchanger to preheat the compressed air to a temperature that would normally be discharged from a compressor, the preheated compressed air is burned with a fuel in the combustor, and additional compressed air from the reservoir is passed through an injector located downstream from the turbine to produce a decreased pressure such that a low atmospheric condition at the turbine exit is simulated.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: May 16, 2017
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Joseph D Brostmeyer, Robert L Memmen
  • Patent number: 9643281
    Abstract: A process of forming a metal part from a metal powder using a laser to melt the metal powder, where a complex part can be formed in which a support structure is formed from lightly bonding metal powder together without melting so that a support structure can be formed, or melting metal powder to form thin ligaments capable of forming a support layer within the metal powder that can be easily broken away when the metal part is finished. The lightly bonded support layer of metal powder can be formed using a ceramic slurry or controlling the laser power or speed so that the metal powder is not melted but lightly bonded together.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: May 9, 2017
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Robert L Memmen, Alex Pinera
  • Publication number: 20170097283
    Abstract: A process for testing a combustor of a gas turbine engine, where a large volume of compressed air is stored in a large reservoir of at least 10,000 m3 such as an underground storage cavern, compressed air from the storage reservoir is passed through heat exchanger to preheat the compressed air to a temperature that would normally be discharged from a compressor, the preheated compressed air is burned with a fuel in the combustor, and additional compressed air from the reservoir is passed through an injector located downstream from the combustor to produce a decreased pressure such that a low atmospheric condition at the combustor exit is simulated.
    Type: Application
    Filed: July 1, 2016
    Publication date: April 6, 2017
    Inventors: Joseph D. Brostmeyer, Robert L. Memmen
  • Publication number: 20170097284
    Abstract: A process for testing a turbine of a gas turbine engine at high altitudes, where a large volume of compressed air is stored in a large reservoir of at least 10,000 m3 such as an underground storage cavern, compressed air from the storage reservoir is passed through heat exchanger to preheat the compressed air to a temperature that would normally be discharged from a compressor, the preheated compressed air is burned with a fuel in the combustor, and additional compressed air from the reservoir is passed through an injector located downstream from the turbine to produce a decreased pressure such that a low atmospheric condition at the turbine exit is simulated.
    Type: Application
    Filed: July 1, 2016
    Publication date: April 6, 2017
    Inventors: Joseph D. Brostmeyer, Robert L. Memmen
  • Patent number: 9611755
    Abstract: An air cooled turbine stator vane with an impingement cooling insert secured within a hollow cavity, where seal slots are formed between the cavity and the insert in which a flexible seal is located, and where the cavity and the insert includes chordwise movement bumpers and sideways movement bumpers each having a gap to allow for relative movement of the insert within the cavity from thermals while maintaining a seal between the cavity and the insert. The flexible seal is an X-shaped seal having four contact surfaces with the seal slots so that a high relative movement can occur while still maintaining a tight seal. The insert includes a number of cross-over tubes connecting return air holes on the pressure side to impingement holes on the suction side of the insert.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: April 4, 2017
    Assignee: Florida Turbine Technologies, Inc.
    Inventor: Robert L Memmen
  • Patent number: 9604756
    Abstract: A process for testing a combustor of a gas turbine engine, where a large volume of compressed air is stored in a large reservoir of at least 10,000 m3 such as an underground storage cavern, compressed air from the storage reservoir is passed through heat exchanger to preheat the compressed air to a temperature that would normally be discharged from a compressor, the preheated compressed air is burned with a fuel in the combustor, and additional compressed air from the reservoir is passed through an injector located downstream from the combustor to produce a decreased pressure such that a low atmospheric condition at the combustor exit is simulated.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: March 28, 2017
    Assignee: Florida Turbine Technologies, Inc.
    Inventors: Joseph D Brostmeyer, Robert L Memmen
  • Patent number: 9506350
    Abstract: A turbine rotor blade of the spar and shell construction, where a one piece shell is secured to a hollow spar using a plurality of chordwise extending shear ties that are cast into a space formed between the shell interior and the spar exterior. A fill pipe is inserted into the hollow spar and is used to deliver the liquid retainer material to the hard to reach slots formed in which the shear ties solidify.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: November 29, 2016
    Assignee: S&J DESIGN, LLC
    Inventor: Robert L Memmen
  • Patent number: 9500564
    Abstract: A process for testing a full-sized aircraft or full-sized gas turbine engine in a wind tunnel and includes the steps of securing a full-sized aircraft or engine in a wind tunnel for testing; filling an underground storage reservoir with compressed air; passing pre-treated compressed air from the underground storage reservoir through the wind tunnel for testing of the full-sized aircraft or engine; connecting an outlet of the wind tunnel to an ejector; and, passing compressed air from the underground storage reservoir through the ejector to decrease the exit pressure at the wind tunnel during testing of the full-sized aircraft or engine. The step of pre-treating compressed air from the underground storage reservoir includes preheating the compressed air; and, passing the higher temperature compressed air into the wind tunnel.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: November 22, 2016
    Assignee: S & J DESIGN, LLC
    Inventors: Joseph D Brostmeyer, Robert L Memmen
  • Publication number: 20160313212
    Abstract: A process for testing a full-sized aircraft or full-sized gas turbine engine in a wind tunnel and includes the steps of securing a full-sized aircraft or engine in a wind tunnel for testing; filling an underground storage reservoir with compressed air; passing pre-treated compressed air from the underground storage reservoir through the wind tunnel for testing of the full-sized aircraft or engine; connecting an outlet of the wind tunnel to an ejector; and, passing compressed air from the underground storage reservoir through the ejector to decrease the exit pressure at the wind tunnel during testing of the full-sized aircraft or engine. The step of pre-treating compressed air from the underground storage reservoir includes preheating the compressed air; and, passing the higher temperature compressed air into the wind tunnel.
    Type: Application
    Filed: July 1, 2016
    Publication date: October 27, 2016
    Inventors: Joseph D. Brostmeyer, Robert L. Memmen
  • Publication number: 20160305436
    Abstract: A process for testing a compressor of a gas turbine engine, where a large volume of compressed air is stored in a large reservoir of at least 10,000 m3 such as an underground storage cavern, compressed air from the storage reservoir is passed through an air turbine to drive a compressor to produce high pressure and temperature compressed air, and where the compressed air can be discharged into a combustor and burned with a fuel for testing of the combustor under simulated conditions of a real gas turbine engine.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 20, 2016
    Inventors: Joseph D. Brostmeyer, Robert L. Memmen
  • Patent number: 9410869
    Abstract: A process for testing a combustor or a compressor of a gas turbine engine, where a large volume of compressed air is stored in a large reservoir of at least 10,000 m3 such as an underground storage cavern, compressed air from the storage reservoir is passed through an air turbine to drive a compressor to produce high pressure and temperature compressed air, and where the compressed air can be discharged into a combustor and burned with a fuel for testing of the combustor under simulated conditions of a real gas turbine engine.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: August 9, 2016
    Assignee: S & J DESIGN LLC
    Inventors: Joseph D Brostmeyer, Robert L Memmen
  • Publication number: 20160194978
    Abstract: An air cooled turbine stator vane with an impingement cooling insert secured within a hollow cavity, where seal slots are formed between the cavity and the insert in which a flexible seal is located, and where the cavity and the insert includes chordwise movement bumpers and sideways movement bumpers each having a gap to allow for relative movement of the insert within the cavity from thermals while maintaining a seal between the cavity and the insert. The flexible seal is an X-shaped seal having four contact surfaces with the seal slots so that a high relative movement can occur while still maintaining a tight seal. The insert includes a number of cross-over tubes connecting return air holes on the pressure side to impingement holes on the suction side of the insert.
    Type: Application
    Filed: November 6, 2014
    Publication date: July 7, 2016
    Inventor: Robert L. Memmen
  • Publication number: 20160069777
    Abstract: A process for testing a combustor or a compressor of a gas turbine engine, where a large volume of compressed air is stored in a large reservoir of at least 10,000 m3 such as an underground storage cavern, compressed air from the storage reservoir is passed through an air turbine to drive a compressor to produce high pressure and temperature compressed air, and where the compressed air can be discharged into a combustor and burned with a fuel for testing of the combustor under simulated conditions of a real gas turbine engine.
    Type: Application
    Filed: November 6, 2015
    Publication date: March 10, 2016
    Inventors: Joseph D. Brostmeyer, Robert L. Memmen
  • Patent number: 8864956
    Abstract: Ion-enhanced physical vapor deposition is augmented by sputtering to deposit multi-component materials. The process may be used to deposit coatings and repair material on Ti alloy turbine engine parts. The physical vapor deposition may be ion-enhanced electron beam physical vapor deposition.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: October 21, 2014
    Assignee: United Technologies Corporation
    Inventors: Igor V. Belousov, Anatoly I. Kuzmichev, Vladimir Biber, Robert L. Memmen