Patents by Inventor Robert L. Morris

Robert L. Morris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970063
    Abstract: Examples described herein provide a computer-implemented method that includes calculating, by a processing device, a motor acceleration error based at least in part on a motor torque and a motor speed. The method further includes calculating, by the processing device, a regression fit line based at least in part on the motor acceleration error. The method further includes identifying, by the processing device, a zero point using the regression fit line. The method further includes comparing, by the processing device, the zero point to a datum reference to determine a difference. The method further includes integrating, by the processing device, the difference to determine the lash angle. The method further includes controlling, by the processing device, the motor based at least in part on the lash angle.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: April 30, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Noah Jon Lovins-Wilusz, Robert L. Morris
  • Patent number: 11970154
    Abstract: A control system for a vehicle includes wheel slip control loop including a wheel slip controller configured to control wheel slip based on wheel speed measured at one or more wheels of the vehicle. A wheel flare control loop includes a wheel flare controller configured to control wheel flare based on transmission output speed at an output of a transmission of the vehicle. A controller is configured to select one of the wheel slip controller to control the wheel slip and the wheel flare controller to control the wheel flare during operation of the vehicle.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: April 30, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jie Yang, Robert L. Morris, Shaochun Ye, Vino Mathew
  • Publication number: 20230074458
    Abstract: A control system for a vehicle includes wheel slip control loop including a wheel slip controller configured to control wheel slip based on wheel speed measured at one or more wheels of the vehicle. A wheel flare control loop includes a wheel flare controller configured to control wheel flare based on transmission output speed at an output of a transmission of the vehicle. A controller is configured to select one of the wheel slip controller to control the wheel slip and the wheel flare controller to control the wheel flare during operation of the vehicle.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 9, 2023
    Inventors: Jie YANG, Robert L. MORRIS, Shaochun YE, Vino MATHEW
  • Publication number: 20230056052
    Abstract: A system includes a reference speed module and a motor control module. The reference speed module is configured to determine a reference speed range based on a speed of a left wheel of a pair of front or rear wheels of a vehicle and a speed of a right wheel of the pair of front or rear wheels. The right wheel is disconnected from the left wheel. The motor control module is configured to control at least one of a first electric motor and a second electric motor based on the reference speed range. The first electric motor is connected to the left wheel. The second electric motor is connected to the right wheel.
    Type: Application
    Filed: August 23, 2021
    Publication date: February 23, 2023
    Inventors: Shaochun YE, Robert L. Morris, Jordan Billet
  • Publication number: 20230051472
    Abstract: Examples described herein provide a computer-implemented method that includes calculating, by a processing device, a motor acceleration error based at least in part on a motor torque and a motor speed. The method further includes calculating, by the processing device, a regression fit line based at least in part on the motor acceleration error. The method further includes identifying, by the processing device, a zero point using the regression fit line. The method further includes comparing, by the processing device, the zero point to a datum reference to determine a difference. The method further includes integrating, by the processing device, the difference to determine the lash angle. The method further includes controlling, by the processing device, the motor based at least in part on the lash angle.
    Type: Application
    Filed: August 10, 2021
    Publication date: February 16, 2023
    Inventors: Noah Jon Lovins-Wilusz, Robert L. Morris
  • Patent number: 10486679
    Abstract: A powertrain system includes a transmission, torque generating device, load coupled to a drive axle, a final drive unit in meshed gear engagement with the output shaft and the drive axle, and a controller. A requested output torque is processed using an open-loop lash state model populated with a capped output torque request table and a lash closure rate estimate table respectively providing a capped torque value and an estimated lash closure rate. Output speed is determined using a plant model, the capped torque value, and the estimated lash closure rate. The powertrain is controlled during the transition using the output speed. A lash angle may be calculated from the closure rate using an integrator logic block. A calibrated lash offset profile may be determined using the lash angle, and a reference speed may be generated using the lash offset profile.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: November 26, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Chia-Shang Liu, Robert L. Morris
  • Publication number: 20190291709
    Abstract: A powertrain system includes a transmission, torque generating device, load coupled to a drive axle, a final drive unit in meshed gear engagement with the output shaft and the drive axle, and a controller. A requested output torque is processed using an open-loop lash state model populated with a capped output torque request table and a lash closure rate estimate table respectively providing a capped torque value and an estimated lash closure rate. Output speed is determined using a plant model, the capped torque value, and the estimated lash closure rate. The powertrain is controlled during the transition using the output speed. A lash angle may be calculated from the closure rate using an integrator logic block. A calibrated lash offset profile may be determined using the lash angle, and a reference speed may be generated using the lash offset profile.
    Type: Application
    Filed: March 20, 2018
    Publication date: September 26, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Chia-Shang Liu, Robert L. Morris
  • Patent number: 10227021
    Abstract: A road load module is configured to determine a road load torque to maintain zero vehicle acceleration. An initialization module is configured to determine an initial torque based on the road load torque. A closed loop (CL) module is configured to: when a CL state transitions from an inactive state to an active state, set a CL torque to the initial torque; and when the CL state is in the active state after transitioning to the active state, adjust the CL torque based on a difference between a target vehicle speed and a vehicle speed. A motor torque module is configured to determine a motor torque command based on the CL torque and a motor torque request determined based on an accelerator pedal position. A switching control module is configured to, based on the motor torque command, control switching of an inverter and apply power to an electric motor.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: March 12, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Love Lor, Adam J. Heisel, Nathaniel S. Michaluk, Robert L. Morris
  • Publication number: 20180264971
    Abstract: A road load module is configured to determine a road load torque to maintain zero vehicle acceleration. An initialization module is configured to determine an initial torque based on the road load torque. A closed loop (CL) module is configured to: when a CL state transitions from an inactive state to an active state, set a CL torque to the initial torque; and when the CL state is in the active state after transitioning to the active state, adjust the CL torque based on a difference between a target vehicle speed and a vehicle speed. A motor torque module is configured to determine a motor torque command based on the CL torque and a motor torque request determined based on an accelerator pedal position. A switching control module is configured to, based on the motor torque command, control switching of an inverter and apply power to an electric motor.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Inventors: Love LOR, Adam J. Heisel, Nathaniel S. Michaluk, Robert L. Morris
  • Patent number: 10017170
    Abstract: A method and system for controlling a vehicle that includes a first propulsion system with a first torque generator and coupled to a first drive member, a second propulsion system with a second torque generator and coupled to a second drive member. The method includes measuring a speed of the first drive member, estimating a speed of the first drive member using a model of the first propulsion system that includes a modeled first rotational inertia and a modeled first translational inertia that are rigidly connected to each other and a model of a first coupling between the modeled first propulsion system and a model of the second propulsion system, and comparing the measured speed of the first drive member to the estimated speed of the first drive member.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: July 10, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Robert L Morris
  • Publication number: 20180186359
    Abstract: A method and system for controlling a vehicle that includes a first propulsion system with a first torque generator and coupled to a first drive member, a second propulsion system with a second torque generator and coupled to a second drive member. The method includes measuring a speed of the first drive member, estimating a speed of the first drive member using a model of the first propulsion system that includes a modeled first rotational inertia and a modeled first translational inertia that are rigidly connected to each other and a model of a first coupling between the modeled first propulsion system and a model of the second propulsion system, and comparing the measured speed of the first drive member to the estimated speed of the first drive member.
    Type: Application
    Filed: January 5, 2017
    Publication date: July 5, 2018
    Inventor: Robert L. Morris
  • Patent number: 9950706
    Abstract: A driveline system includes a drive axle coupled to a load, an electric machine, and a control system. The electric machine is responsive to a commanded torque, has a rotor shaft coupled to the axle, and produces an output torque that rotates the axle and load to produce driveline oscillation at a high resonant frequency. The control system generates the commanded torque using a nested control loop architecture in which an outer control loop operates at a sampling rate that is below a critical rate necessary for controlling the resonant frequency, and an inner control loop operates at a sampling rate that is above the critical rate. The inner loop determines a modified torque command and acceleration value in response to a commanded torque from the outer loop. The electric machine is thereafter controlled via the commanded torque.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: April 24, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Jie Yang, Robert L. Morris, Chia-Shang Liu, Yo Chan Son
  • Patent number: 9809130
    Abstract: An electric motor control system for a vehicle includes a vehicle speed module that determines a vehicle speed. A closed loop (CL) module determines a CL torque based on a difference between a target vehicle speed and the vehicle speed. A motor torque module determines a motor torque based on the CL torque and a motor torque request determined based on a position of an accelerator pedal. A switching control module controls switching of an inverter based on the motor torque to control application of power to an electric motor of the vehicle.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: November 7, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Adam J. Heisel, Christopher J. Twarog, Anthony H. Heap, Derek S. Bonderczuk, Krunal P. Patel, Lawrence A. Kaminsky, Nathaniel S. Michaluk, Robert L. Morris, Shaochun Ye, Jeffrey J. Waldner
  • Publication number: 20170136916
    Abstract: An electric motor control system for a vehicle includes a vehicle speed module that determines a vehicle speed. A closed loop (CL) module determines a CL torque based on a difference between a target vehicle speed and the vehicle speed. A motor torque module determines a motor torque based on the CL torque and a motor torque request determined based on a position of an accelerator pedal. A switching control module controls switching of an inverter based on the motor torque to control application of power to an electric motor of the vehicle.
    Type: Application
    Filed: March 24, 2016
    Publication date: May 18, 2017
    Inventors: Adam J. HEISEL, Christopher J. Twarog, Anthony H. Heap, Derek S. Bonderczuk, Krunal P. Patel, Lawrence A. Kaminsky, Nathaniel S. Michaluk, Robert L. Morris, Shaochun Ye, Jeffrey J. Waldner
  • Patent number: 9323418
    Abstract: A method for analysis of a prototype graphical user interface (GUI) comprising the following steps: receiving, with a processor, a computer code representative of the prototype GUI, wherein the prototype GUI comprises GUI elements having known identities and known behavioral attributes; transforming the computer code into a description of visible sub-elements of the prototype GUI elements, wherein each sub-element has visual properties that would be visible to a user of the prototype GUI; grouping particular visible sub-elements into a perceived GUI element based only on the sub-elements' visual properties according to a grouping algorithm without regard to the known identity(ies) of the prototype GUI element(s) to which the particular sub-elements belong; and storing, in a non-transitory first memory store, the perceived GUI element.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: April 26, 2016
    Assignee: The United States of America as represented by Secretary of the Navy
    Inventors: Joseph C. DiVita, Robert L. Morris
  • Publication number: 20160102757
    Abstract: A vehicle includes a torque device providing input torque, a transmission, an axle connected to drive wheels, a final drive unit, and a controller. The controller includes proportional-integral (PI) logic, and is programmed to determine a speed of the drive wheels and output shaft. The controller executes a method to calculate a reference output speed using the drive wheel speed and applies a calibrated offset profile to the calculated reference output speed during a lash state transition of the final drive unit, output shaft, and axle. This controls, via the PI logic, a speed difference between the output shaft and drive axle. The calibrated offset profile is higher in an early portion of the lash state to speed a transition from the lash state, and lower in a later portion of the lash state to reduce driveline clunk upon transition from the gear lash state.
    Type: Application
    Filed: October 13, 2014
    Publication date: April 14, 2016
    Inventors: Shaochun Ye, Robert L. Morris, Houchun Xia
  • Patent number: 9290089
    Abstract: A method to predict a driveline lash condition includes monitoring an axle torque request signal, determining a predicted axle torque request value at a lead time based upon the monitored axle torque request signal, and predicting the driveline lash condition at the lead time based upon the predicted axle torque request value indicating an upcoming zero torque condition.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: March 22, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Houchun Xia, Robert L. Morris
  • Publication number: 20160039406
    Abstract: A method for managing output bump/clunk in a neutral state in a strong hybrid vehicle includes calculating a motor torque for an electric traction motor connected to a third node of a planetary gear set. The motor torque is calculated as a product of a predetermined inertia of the electric traction motor, the calculated acceleration of the engine, and a gear ratio of the planetary gear set. The calculated motor torque is commanded from the electric traction motor via a controller in a direction opposite the calculated acceleration of the output shaft, including transmitting a motor torque command to the electric traction motor for the duration of the neutral state. The vehicle includes the engine, a damper assembly, the transmission, and the controller.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 11, 2016
    Inventors: Chia-Shang Liu, Shaochun Ye, Robert L. Morris
  • Patent number: 9238461
    Abstract: A method for managing output bump/clunk in a neutral state in a strong hybrid vehicle includes calculating a motor torque for an electric traction motor connected to a third node of a planetary gear set. The motor torque is calculated as a product of a predetermined inertia of the electric traction motor, the calculated acceleration of the engine, and a gear ratio of the planetary gear set. The calculated motor torque is commanded from the electric traction motor via a controller in a direction opposite the calculated acceleration of the output shaft, including transmitting a motor torque command to the electric traction motor for the duration of the neutral state. The vehicle includes the engine, a damper assembly, the transmission, and the controller.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: January 19, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Chia-Shang Liu, Shaochun Ye, Robert L. Morris
  • Patent number: 9139096
    Abstract: A method or algorithm controls a motor in a vehicle having a proportional-integral controller. The controller determines a commanded damping control torque as a proportional output torque value and a commanded motor speed control torque as an integrator output torque value. The integrator torque output value is frozen only if the proportional torque output value saturates against a limit and the direction of the speed error is the same as that of the integrator torque output value. The proportional torque output value is calculated using different error values than are used in calculating the integrator output value. A vehicle includes one or more traction motors and the controller noted above. For two motors, the controller determines the damping torques and motor speed control torques separately for each motor.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: September 22, 2015
    Assignee: GM Global Technology Operations LLC
    Inventor: Robert L. Morris