Patents by Inventor Robert Lee Lingle

Robert Lee Lingle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8768129
    Abstract: Certain embodiments of the invention may include optimized trench-assisted ultra large area (ULA) optical fibers. According to an example embodiment of the invention, a trench-assisted optical fiber, optimized for figure-of-merit (FOM) performance, is provided. The optical fiber includes a core region having a longitudinal axis, a shelf region surrounding said core region, a cladding region surrounding said shelf region, said core and shelf and cladding regions configured to support and guide the propagation of signal light in a fundamental transverse mode in said core and shelf regions in the direction of said axis. The optical fiber further includes a core effective area (Aeff) of between 135 ?m2 and about 170 ?m2; and an index profile having a figure of merit (FOM) frontier distance less than about 0.7 dB.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: July 1, 2014
    Assignee: OFS Fitel, LLC
    Inventors: David Wayne Peckham, Robert Lee Lingle
  • Patent number: 8718431
    Abstract: Certain embodiments of the invention may include optimized trench-assisted ultra large area (ULA) optical fibers. According to an example embodiment of the invention, a trench-assisted optical fiber, optimized for microbending and figure-of-merit (FOM) performance is provided. The optical fiber includes a core region having a longitudinal axis, a shelf region surrounding said core region, a cladding region surrounding said shelf region, said core and shelf and cladding regions configured to support and guide the propagation of signal light in a fundamental transverse mode in said core and shelf regions in the direction of said axis, the cladding region including an inner trench and an outer trench. The optical fiber further includes a core effective area (Aeff) of between 135 ?m2 and about 170 ?m2; a figure of merit (FOM) frontier distance less than about 0.8 dB; and a microbend frontier (MBF) distance of less than about 90%.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: May 6, 2014
    Assignee: OFS Fitel, LLC
    Inventors: David Wayne Peckham, Robert Lee Lingle
  • Patent number: 8687932
    Abstract: Certain embodiments of the invention may include optimized trench-assisted ultra large area (ULA) optical fibers. According to an example embodiment of the invention, a trench-assisted optical fiber, optimized for figure-of-merit (FOM) performance is provided. The optical fiber includes a core region having a longitudinal axis, a shelf region surrounding said core region, a cladding region surrounding said shelf region, said core and shelf and cladding regions configured to support and guide the propagation of signal light in a fundamental transverse mode in said core and shelf regions in the direction of said axis. The optical fiber further includes a core effective area (Aeff) of between 135 ?m2 and about 170 ?m2; a relative effective index difference (Neff) of greater than about 0.08%; a loss at 1550 nm of less than 0.185 dB/km; and an index profile having a figure of merit (FOM) frontier distance less than about 0.5 dB.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 1, 2014
    Assignee: OFS Fitel, LLC
    Inventors: David Wayne Peckham, Robert Lee Lingle
  • Publication number: 20130243949
    Abstract: Described is a modular method of making an optical fiber comprising a core and a cladding configured to support and guide a fundamental transverse mode, the cladding including (i) an outer cladding having an index nout less than the index n1 of the core, (ii) an inner cladding having an index n2<nout, (iii) a pedestal having an index n4?nout, (iv) an inner trench disposed between the inner cladding and the pedestal, the inner trench having an index n3<<n4, and (iv) an outer trench disposed between the pedestal and the outer cladding, the outer trench having an index n5<n4 and relatively close to nout. To suppress unwanted HOMs the pedestal is configured to resonantly couple at least one unwanted transverse mode of the core (other than the fundamental mode) to at least one transverse mode of the pedestal.
    Type: Application
    Filed: May 14, 2013
    Publication date: September 19, 2013
    Applicant: OFS FITEL, LLC
    Inventors: John Michael Fini, Robert Lee Lingle, JR., Yi Sun
  • Patent number: 8472770
    Abstract: Optical fiber comprises core and a cladding configured to support and guide a fundamental transverse mode, the cladding including (i) an outer cladding having an index nout less than the index n1 of the core, (ii) an inner cladding having an index n2<nout, (iii) a pedestal having an index n4˜nout, (iv) an inner trench disposed between the inner cladding and the pedestal, the inner trench having an index n3<<n4, and (iv) an outer trench disposed between the pedestal and the outer cladding, the outer trench having an index n5<n4 and relatively close to nout. To suppress unwanted HOMs the pedestal is configured to resonantly couple at least one unwanted transverse mode of the core (other than the fundamental mode) to at least one transverse mode of the pedestal. Also described is a modular method of making the optical fiber of silica glass.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: June 25, 2013
    Assignee: OFS Fitel, LLC
    Inventors: John Michael Fini, Robert Lee Lingle, Jr., Yi Sun
  • Publication number: 20130071079
    Abstract: Certain embodiments of the invention may include optimized trench-assisted ultra large area (ULA) optical fibers. According to an example embodiment of the invention, a trench-assisted optical fiber, optimized for microbending and figure-of-merit (FOM) performance is provided. The optical fiber includes a core region having a longitudinal axis, a shelf region surrounding said core region, a cladding region surrounding said shelf region, said core and shelf and cladding regions configured to support and guide the propagation of signal light in a fundamental transverse mode in said core and shelf regions in the direction of said axis, the cladding region including an inner trench and an outer trench. The optical fiber further includes a core effective area (Aeff) of between 135 ?m2 and about 170 ?m2; a figure of merit (FOM) frontier distance less than about 0.8 dB; and a microbend frontier (MBF) distance of less than about 90%.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: OFS FITEL, LLC
    Inventors: David Wayne Peckham, Robert Lee Lingle
  • Publication number: 20130071080
    Abstract: Certain embodiments of the invention may include optimized trench-assisted ultra large area (ULA) optical fibers. According to an example embodiment of the invention, a trench-assisted optical fiber, optimized for figure-of-merit (FOM) performance is provided. The optical fiber includes a core region having a longitudinal axis, a shelf region surrounding said core region, a cladding region surrounding said shelf region, said core and shelf and cladding regions configured to support and guide the propagation of signal light in a fundamental transverse mode in said core and shelf regions in the direction of said axis. The optical fiber further includes a core effective area (Aeff) of between 135 ?m2 and about 170 ?m2; a relative effective index difference (Neff) of greater than about 0.08%; a loss at 1550 nm of less than 0.185 dB/km; and an index profile having a figure of merit (FOM) frontier distance less than about 0.5 dB.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: OFS FITEL, LLC
    Inventors: David Wayne Peckham, Robert Lee Lingle
  • Publication number: 20130071081
    Abstract: Certain embodiments of the invention may include optimized trench-assisted ultra large area (ULA) optical fibers. According to an example embodiment of the invention, a trench-assisted optical fiber, optimized for figure-of-merit (FOM) performance, is provided. The optical fiber includes a core region having a longitudinal axis, a shelf region surrounding said core region, a cladding region surrounding said shelf region, said core and shelf and cladding regions configured to support and guide the propagation of signal light in a fundamental transverse mode in said core and shelf regions in the direction of said axis.. The optical fiber further includes a core effective area (Aeff) of between 135 ?m2 and about 170 ?m2; and an index profile having a figure of merit (FOM) frontier distance less than about 0.7 dB.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: OFS FITEL, LLC
    Inventors: David Wayne Peckham, Robert Lee Lingle
  • Publication number: 20110026891
    Abstract: An optical fiber that concurrently satisfies G.657 and G.652 standards comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode, the cladding region including (i) an outer cladding region having a refractive index nout less than the refractive index n1 of the core region, (ii) an inner cladding region have a refractive index n2 less than nout, (iii) a pedestal (or ring) region having a refractive index n4 approximately equal to nout, (iv) an inner trench region disposed between the inner cladding region and the pedestal region, the inner trench region having a refractive index n3 much less than that of the pedestal region, and (iv) an outer trench region disposed between the pedestal region and the outer cladding region, the outer trench region having a refractive index n5 less than that of the pedestal region and relatively close to that of the outer cladding region.
    Type: Application
    Filed: September 28, 2010
    Publication date: February 3, 2011
    Inventors: John Michael Fini, Robert Lee Lingle, JR., Yi Sun