Patents by Inventor Robert Lempkowski

Robert Lempkowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6594414
    Abstract: A structure for an optical switch includes a reflective layer formed over a high quality epitaxial layer of piezoelectric compound semiconductor materials grown over a monocrystalline substrate, such as a silicon wafer. The piezoelectric layer can be activated to alter the path of light incident on the reflective layer. A compliant substrate is provided for growing the monocrystalline compound semiconductor layer. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying piezoelectric monocrystalline material layer.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: July 15, 2003
    Assignee: Motorola, Inc.
    Inventors: Aroon Tungare, Keryn Lian, Robert Lempkowski, Barbara Foley Barenburg
  • Publication number: 20030034491
    Abstract: High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials.
    Type: Application
    Filed: August 14, 2001
    Publication date: February 20, 2003
    Applicant: Motorola, Inc.
    Inventors: Robert Lempkowski, Marc Chason
  • Publication number: 20030027361
    Abstract: Polarization modulator devices can be formed to take advantage of multi-layered semiconductor structures. High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer.
    Type: Application
    Filed: August 6, 2001
    Publication date: February 6, 2003
    Applicant: MOTOROLA, INC.
    Inventor: Robert Lempkowski
  • Publication number: 20030021520
    Abstract: A structure for an optical switch includes a reflective layer formed over a high quality epitaxial layer of piezoelectric compound semiconductor materials grown over a monocrystalline substrate, such as a silicon wafer. The piezoelectric layer can be activated to alter the path of light incident on the reflective layer. A compliant substrate is provided for growing the monocrystalline compound semiconductor layer. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying piezoelectric monocrystalline material layer.
    Type: Application
    Filed: July 25, 2001
    Publication date: January 30, 2003
    Applicant: MOTOROLA, INC.
    Inventors: Aroon Tungare, Keryn Lian, Robert Lempkowski, Barbara Foley Barenburg
  • Publication number: 20030015722
    Abstract: High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant-enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials.
    Type: Application
    Filed: July 17, 2001
    Publication date: January 23, 2003
    Applicant: Motorola, Inc.
    Inventors: Marc Chason, Daniel Gamota, Robert Lempkowski
  • Publication number: 20030015705
    Abstract: High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials.
    Type: Application
    Filed: July 17, 2001
    Publication date: January 23, 2003
    Applicant: Motorola, Inc.
    Inventors: Marc Chason, Daniel Gamota, Robert Lempkowski
  • Publication number: 20030010992
    Abstract: A semiconductor structure for providing cross-point switch functionality includes a monocrystalline silicone substrate, and an amorphous oxide material overlying the monocrystalline silicone substrate. A monocrystalline perovskite oxide material overlies the amorphous oxide material, and a monocrystalline compound semiconductor material overlies the monocrystalline perovskite oxide material. The monocrystalline compound semiconductor material includes an optical source component operable to generate a radiant energy transmission. A diffraction grating is optically coupled with the optical source component and has a configuration for passing the radiant energy transmission in a predetermined radiant energy intensity pattern, forming a plurality of replications of the radiant energy transmission.
    Type: Application
    Filed: July 16, 2001
    Publication date: January 16, 2003
    Applicant: MOTOROLA, INC.
    Inventors: Robert Lempkowski, Daniel Gamota
  • Patent number: 6498358
    Abstract: A semiconductor structure for implementing optical beam switching includes a monocrystalline silicon substrate and an amorphous oxide material overlying the monocrystalline silicon substrate. A monocrystalline perovskite oxide material overlies the amorphous oxide material and a monocrystalline compound semiconductor material overlies the monocrystalline perovskite oxide material. An optical source component that is operable to transmit radiant energy is formed within the monocrystalline compound semiconductor layer. A diffraction grating including an electrochromic portion is optically coupled to the optical source component.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: December 24, 2002
    Assignee: Motorola, Inc.
    Inventors: Lawrence E. Lach, Robert Lempkowski, Tomasz L. Klosowiak, Keryn Lian