Patents by Inventor Robert Lewen
Robert Lewen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240176172Abstract: An electro-absorption modulator (EAM) is configured to include an on-chip AC ground plane that is used to terminate the high frequency RF input signal within the chip itself. This on-chip ground termination of the modulation input signal improves the frequency response of the EAM, which is an important feature when the EAM needs to support data rates in excess of 50 Gbd. By virtue of using an on-chip ground for the very high frequency signal content, it is possible to use less expensive off-chip components to address the lower frequency range of the data signal (i.e., for frequencies less than about 1 GHz).Type: ApplicationFiled: February 6, 2024Publication date: May 30, 2024Applicant: II-VI Delaware, Inc.Inventors: Andrei Kaikkonen, David Adams, Robert Lewen, Nicolae Chitica
-
Patent number: 11927839Abstract: An electro-absorption modulator (EAM) is configured to include an on-chip AC ground plane that is used to terminate the high frequency RF input signal within the chip itself. This on-chip ground termination of the modulation input signal improves the frequency response of the EAM, which is an important feature when the EAM needs to support data rates in excess of 50 Gbd. By virtue of using an on-chip ground for the very high frequency signal content, it is possible to use less expensive off-chip components to address the lower frequency range of the data signal (i.e., for frequencies less than about 1 GHz).Type: GrantFiled: September 14, 2020Date of Patent: March 12, 2024Assignee: II-VI Delaware, Inc.Inventors: Andrei Kaikkonen, David Adams, Robert Lewen, Nicolae Chitica
-
Publication number: 20230244094Abstract: An optical communication device may include a driver component, arranged to achieve a driving voltage, and a modulator component, including a laser or arranged to receive light from a laser. The modulator component may be arranged to achieve a modulated light signal modulated based on the driving voltage. The device may include a transmission line arranged to transfer the driving voltage between the driver component and the modulator component. The transmission line may not impedance matched to the driver component, the transmission line may have an impedance which is at least 20% lower than an output impedance of the driver component, and the transmission line may be impedance matched with respect to signal reflections to the modulator component.Type: ApplicationFiled: April 4, 2023Publication date: August 3, 2023Inventors: Andrei Kaikkonen, Simon Chen, Robert Lewen, Osamu Mizuhara
-
Patent number: 11650436Abstract: An optical communication device may include a driver component, arranged to achieve a driving voltage, and a modulator component, including a laser or arranged to receive light from a laser. The modulator component may be arranged to achieve a modulated light signal modulated based on the driving voltage. The device may include a transmission line arranged to transfer the driving voltage between the driver component and the modulator component. The transmission line may not impedance matched to the driver component, the transmission line may have an impedance which is at least 20% lower than an output impedance of the driver component, and the transmission line may be impedance matched with respect to signal reflections to the modulator component.Type: GrantFiled: August 27, 2020Date of Patent: May 16, 2023Assignee: II-VI DELAWARE, INC.Inventors: Andrei Kaikkonen, Simon Chen, Robert Lewén, Osamu Mizuhara
-
Publication number: 20220082874Abstract: An electro-absorption modulator (EAM) is configured to include an on-chip AC ground plane that is used to terminate the high frequency RF input signal within the chip itself. This on-chip ground termination of the modulation input signal improves the frequency response of the EAM, which is an important feature when the EAM needs to support data rates in excess of 50 Gbd. By virtue of using an on-chip ground for the very high frequency signal content, it is possible to use less expensive off-chip components to address the lower frequency range of the data signal (i.e., for frequencies less than about 1 GHz).Type: ApplicationFiled: September 14, 2020Publication date: March 17, 2022Applicant: II-VI Delaware, Inc.Inventors: Andrei Kaikkonen, David Adams, Robert Lewen, Nicolae Chitica
-
Publication number: 20210072565Abstract: An optical communication device may include a driver component, arranged to achieve a driving voltage, and a modulator component, including a laser or arranged to receive light from a laser. The modulator component may be arranged to achieve a modulated light signal modulated based on the driving voltage. The device may include a transmission line arranged to transfer the driving voltage between the driver component and the modulator component. The transmission line may not impedance matched to the driver component, the transmission line may have an impedance which is at least 20% lower than an output impedance of the driver component, and the transmission line may be impedance matched with respect to signal reflections to the modulator component.Type: ApplicationFiled: August 27, 2020Publication date: March 11, 2021Inventors: Andrei Kaikkonen, Simon Chen, Robert Lewén, Osamu Mizuhara
-
Patent number: 10551714Abstract: An optical interference modulator comprises a main input, a main output, an optical splitter connected to the main input, first and second MMI couplers, each with a first primary-end access port connected to the splitter; a second primary-end access port connected to the main output; a first secondary-end access port connected to a respective primary waveguide; and a second secondary-end access port connected to a respective secondary waveguide. A light reflector is arranged to reflect light incident from said primary and secondary waveguides back into the same respective waveguide such that light travelling through the respective waveguide from the respective secondary-end access port, after reflection, travels back to the same secondary-end access port. For the MMI couplers, at least one of the respective primary and secondary waveguides comprises a respective light phase modulating device arranged to modulate the phase of light travelling along the corresponding waveguide in either direction.Type: GrantFiled: May 15, 2018Date of Patent: February 4, 2020Assignee: Finisar Sweden ABInventors: David Adams, Efthymios Rouvalis, Jan-Olof Wesström, Martin Zirngibl, Robert Lewén, Christopher Daunt
-
Patent number: 10180588Abstract: An electro-optical modulator includes a substrate comprising a first Mach-Zehnder modulator comprising a first waveguide and a second waveguide and a second Mach-Zehnder modulator comprising a first waveguide and a second waveguide. A first positive signal electrode is positioned on the substrate over the first waveguide of the first Mach-Zehnder modulator and a first negative signal electrode is positioned on the substrate over the second waveguide of the first Mach-Zehnder modulator. The first positive signal electrode and the first negative signal electrode are connected to a first differential signal input. A second positive signal electrode is positioned on the substrate over the first waveguide of the second Mach-Zehnder modulator and a second negative signal electrode positioned on the substrate over the second waveguide of the second Mach-Zehnder modulator. The second positive signal electrode and the second negative signal electrode are connected to a second differential signal input.Type: GrantFiled: July 19, 2018Date of Patent: January 15, 2019Assignee: Finisar CorporationInventors: Robert Lewen, Andrei Kaikkonen, Christopher Daunt, Marek Chacinski
-
Patent number: 8787412Abstract: Method for calibrating and tuning a part wise monotonically, continuously tunable semiconductor laser having a phase section and a first Bragg reflector section, through which sections a phase current and a first reflector current, respectively, are applied, which laser is not actively cooled, includes a) a calibration step, including obtaining at least two tuning lines along which tuning lines all combinations of phase and Bragg currents are stable operating points, identifying at least one reference stable operating point along a first one of the identified tuning lines at which operating point the laser emits light at a certain reference frequency, and storing at least one reference stable operating point; and b) a subsequent tuning step, during which the output frequency of the laser in relation to the reference frequency is controlled to a desired output frequency by translating the operating point of the laser along the first tuning line.Type: GrantFiled: October 5, 2011Date of Patent: July 22, 2014Assignee: Syntune ABInventors: Urban Eriksson, Robert Lewén, Jan-Olof Wesström, Filip Öhman
-
Patent number: 8665917Abstract: Method for calibrating a tunable semiconductor laser having a phase section and a first Bragg reflector section, through which sections a phase current and a first reflector current, respectively, is applied, includes: a) selecting a phase current; b) identifying a range of reflector currents that achieves emission of light from the laser within a desired frequency band; c) scanning the reflector current(s) over the range of reflector currents, for each of at least two different phase currents, and reading the relative output power of the laser for each point scanned; d) identifying one stable operating point; e) identifying and storing one stable, continuous tuning line as constructed by interpolating; f) calibrating the laser frequency and observing a fed back signal from a target for the light emitted from the laser; g) measuring the temperature of the laser; and h) storing temperature and one operating point along the tuning line.Type: GrantFiled: October 5, 2011Date of Patent: March 4, 2014Assignee: Syntune ABInventors: Urban Eriksson, Robert Lewén, Jan-Olof Wesström, Filip Öhman
-
Publication number: 20130243015Abstract: Method for calibrating a tunable semiconductor laser having a phase section and a first Bragg reflector section, through which sections a phase current and a first reflector current, respectively, is applied, includes: a) selecting a phase current; b) identifying a range of reflector currents that achieves emission of light from the laser within a desired frequency band; c) scanning the reflector current(s) over the range of reflector currents, for each of at least two different phase currents, and reading the relative output power of the laser for each point scanned; d) identifying one stable operating point; e) identifying and storing one stable, continuous tuning line as constructed by interpolating; f) calibrating the laser frequency and observing a fed back signal from a target for the light emitted from the laser; g) measuring the temperature of the laser; and h) storing temperature and one operating point along the tuning line.Type: ApplicationFiled: October 5, 2011Publication date: September 19, 2013Applicant: SYNTUNE ABInventors: Urban Eriksson, Robert Lewén, Jan-Olof Wesström, Filip Öhman
-
Publication number: 20130243014Abstract: Method for calibrating and tuning a part wise monotonically, continuously tunable semiconductor laser having a phase section and a first Bragg reflector section, through which sections a phase current and a first reflector current, respectively, are applied, which laser is not actively cooled, includes a) a calibration step, including obtaining at least two tuning lines along which tuning lines all combinations of phase and Bragg currents are stable operating points, identifying at least one reference stable operating point along a first one of the identified tuning lines at which operating point the laser emits light at a certain reference frequency, and storing at least one reference stable operating point; and b) a subsequent tuning step, during which the output frequency of the laser in relation to the reference frequency is controlled to a desired output frequency by translating the operating point of the laser along the first tuning line.Type: ApplicationFiled: October 5, 2011Publication date: September 19, 2013Applicant: SYNTUNE ABInventors: Urban Eriksson, Robert Lewén, Jan-Olof Wesström, Filip Öhman
-
Patent number: 7426321Abstract: The present invention relates to an optical modulator, divided into at least two active segments separated by at least one passive segment. The modulator comprises: an optical waveguide with an optical group index no having an optical signal propagating at an optical velocity vo, and a microwave transmission line with an electrical propagation index np, having an electrical signal propagating at an electrical velocity Ve. The electrical propagation index np of the unloaded microwave transmission line is lower than the optical group index no of the optical waveguide. The loading and length of the microwave transmission line are adjusted for a specific Bloch impedance and electrical velocity ve. The invention also relates to a method for adapting the impedance of an optical modulator.Type: GrantFiled: March 12, 2004Date of Patent: September 16, 2008Assignee: Finisar CorporationInventors: Urban Eriksson, Robert Lewén
-
Publication number: 20070009195Abstract: The present invention relates to an optical modulator, divided into at least two active segments separated by at least one passive segment. The modulator comprises: an optical waveguide with an optical group index no having an optical signal propagating at an optical velocity vo, and a microwave transmission line with an electrical propagation index np, having an electrical signal propagating at an electrical velocity Ve. The electrical propagation index np of the unloaded microwave transmission line is lower than the optical group index no of the optical waveguide. The loading and length of the microwave transmission line are adjusted for a specific Bloch impedance and electrical velocity ve. The invention also relates to a method for adapting the impedance of an optical modulator.Type: ApplicationFiled: March 12, 2004Publication date: January 11, 2007Inventors: Urban Eriksson, Robert Lewen