Patents by Inventor Robert Littrell

Robert Littrell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11800299
    Abstract: A MEMS transducer system has a transducer configured to convert a received signal into an output signal for forwarding by a transducer output port, and an integrated circuit having an IC input in communication with the transducer output port. The IC input is configured to receive an IC input signal produced as a function of the output signal. The system also has a dividing element coupled between the IC input and the transducer output port. The dividing element is configured to selectively attenuate one or more signals into the IC input to at least in part produce the IC input signal. Other implementations may couple a feedback loop to the ground of the transducer (similar to bootstrapping), or pick off voltages at specific portions of the transducer.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: October 24, 2023
    Assignee: QUALCOMM Technologies, Inc.
    Inventors: Robert Littrell, Ronald Gagnon
  • Patent number: 11696078
    Abstract: A robust MEMS transducer includes a kinetic energy diverter disposed within its frontside cavity. The kinetic energy diverter blunts or diverts kinetic energy in a mass of air moving through the frontside cavity, before that kinetic energy reaches a diaphragm of the MEMS transducer. The kinetic energy diverter renders the MEMS transducer more robust and resistant to damage from such a moving mass of air.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: July 4, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Craig Core, Hamid Basaeri, Robert Littrell
  • Publication number: 20220369043
    Abstract: A robust MEMS transducer includes a kinetic energy diverter disposed within its frontside cavity. The kinetic energy diverter blunts or diverts kinetic energy in a mass of air moving through the frontside cavity, before that kinetic energy reaches a diaphragm of the MEMS transducer. The kinetic energy diverter renders the MEMS transducer more robust and resistant to damage from such a moving mass of air.
    Type: Application
    Filed: August 2, 2022
    Publication date: November 17, 2022
    Inventors: Craig Core, Hamid Basaeri, Robert Littrell
  • Patent number: 11438706
    Abstract: A robust MEMS transducer includes a kinetic energy diverter disposed within its frontside cavity. The kinetic energy diverter blunts or diverts kinetic energy in a mass of air moving through the frontside cavity, before that kinetic energy reaches a diaphragm of the MEMS transducer. The kinetic energy diverter renders the MEMS transducer more robust and resistant to damage from such a moving mass of air.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: September 6, 2022
    Assignee: Vesper Technologies Inc.
    Inventors: Craig Core, Hamid Basaeri, Robert Littrell
  • Publication number: 20220279286
    Abstract: A MEMS transducer system has a transducer configured to convert a received signal into an output signal for forwarding by a transducer output port, and an integrated circuit having an IC input in communication with the transducer output port. The IC input is configured to receive an IC input signal produced as a function of the output signal. The system also has a dividing element coupled between the IC input and the transducer output port. The dividing element is configured to selectively attenuate one or more signals into the IC input to at least in part produce the IC input signal. Other implementations may couple a feedback loop to the ground of the transducer (similar to bootstrapping), or pick off voltages at specific portions of the transducer.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 1, 2022
    Inventors: Robert Littrell, Ronald Gagnon
  • Patent number: 11363387
    Abstract: A MEMS transducer system has a transducer configured to convert a received signal into an output signal for forwarding by a transducer output port, and an integrated circuit having an IC input in communication with the transducer output port. The IC input is configured to receive an IC input signal produced as a function of the output signal. The system also has a dividing element coupled between the IC input and the transducer output port. The dividing element is configured to selectively attenuate one or more signals into the IC input to at least in part produce the IC input signal. Other implementations may couple a feedback loop to the ground of the transducer (similar to bootstrapping), or pick off voltages at specific portions of the transducer.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: June 14, 2022
    Assignee: Vesper Technologies, Inc.
    Inventors: Robert Littrell, Ronald Gagnon
  • Patent number: 11217741
    Abstract: A transducer includes a first piezoelectric layer; and a second piezoelectric layer that is above the first piezoelectric layer; wherein the second piezoelectric layer is a more compressive layer with an average stress that is less than or more compressive than an average stress of the first piezoelectric layer.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: January 4, 2022
    Assignee: Vesper Technologies Inc.
    Inventor: Robert Littrell
  • Patent number: 11099078
    Abstract: An acoustic sensor has a MEMS die with MEMS structure. Among other things, the MEMS structure includes a diaphragm configured to mechanically respond to incident acoustic signals, and a temperature sensor member configured to detect temperature.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: August 24, 2021
    Assignee: Vesper Technologies, Inc.
    Inventors: Robert Littrell, Yu Hui, Craig Core, Ronald Gagnon
  • Publication number: 20210211809
    Abstract: A robust MEMS transducer includes a kinetic energy diverter disposed within its frontside cavity. The kinetic energy diverter blunts or diverts kinetic energy in a mass of air moving through the frontside cavity, before that kinetic energy reaches a diaphragm of the MEMS transducer. The kinetic energy diverter renders the MEMS transducer more robust and resistant to damage from such a moving mass of air.
    Type: Application
    Filed: January 7, 2021
    Publication date: July 8, 2021
    Inventors: Craig Core, Hamid Basaeri, Robert Littrell
  • Publication number: 20210160623
    Abstract: A MEMS transducer system has a transducer configured to convert a received signal into an output signal for forwarding by a transducer output port, and an integrated circuit having an IC input in communication with the transducer output port. The IC input is configured to receive an IC input signal produced as a function of the output signal. The system also has a dividing element coupled between the IC input and the transducer output port. The dividing element is configured to selectively attenuate one or more signals into the IC input to at least in part produce the IC input signal. Other implementations may couple a feedback loop to the ground of the transducer (similar to bootstrapping), or pick off voltages at specific portions of the transducer.
    Type: Application
    Filed: February 3, 2021
    Publication date: May 27, 2021
    Inventors: Robert Littrell, Ronald Gagnon
  • Patent number: 10917727
    Abstract: A MEMS transducer system has a transducer configured to convert a received signal into an output signal for forwarding by a transducer output port, and an integrated circuit having an IC input in communication with the transducer output port. The IC input is configured to receive an IC input signal produced as a function of the output signal. The system also has a dividing element coupled between the IC input and the transducer output port. The dividing element is configured to selectively attenuate one or more signals into the IC input to at least in part produce the IC input signal. Other implementations may couple a feedback loop to the ground of the transducer (similar to bootstrapping), or pick off voltages at specific portions of the transducer.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: February 9, 2021
    Assignee: Vesper Technologies, Inc.
    Inventors: Robert Littrell, Ronald Gagnon
  • Publication number: 20190289405
    Abstract: A MEMS transducer system has a transducer configured to convert a received signal into an output signal for forwarding by a transducer output port, and an integrated circuit having an IC input in communication with the transducer output port. The IC input is configured to receive an IC input signal produced as a function of the output signal. The system also has a dividing element coupled between the IC input and the transducer output port. The dividing element is configured to selectively attenuate one or more signals into the IC input to at least in part produce the IC input signal. Other implementations may couple a feedback loop to the ground of the transducer (similar to bootstrapping), or pick off voltages at specific portions of the transducer.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 19, 2019
    Inventors: Robert Littrell, Ronald Gagnon
  • Publication number: 20180159021
    Abstract: A transducer includes a first piezoelectric layer; and a second piezoelectric layer that is above the first piezoelectric layer; wherein the second piezoelectric layer is a more compressive layer with an average stress that is less than or more compressive than an average stress of the first piezoelectric layer.
    Type: Application
    Filed: April 22, 2016
    Publication date: June 7, 2018
    Applicant: VESPER TECHNOLOGIES INC.
    Inventor: Robert Littrell