Patents by Inventor Robert M. Jennings

Robert M. Jennings has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11865808
    Abstract: An optical film includes a plurality of polymeric layers shaped along orthogonal first and second directions. A first curve being an intersection of the optical film with a first plane orthogonal to the second direction and to a reference plane has a best-fit first circular arc subtending a first angle at a center of curvature of the first circular arc of greater than 180 degrees where the optical film has a maximum projected area in the reference plane. A second curve being an intersection of the optical film with a second plane orthogonal to the first direction and to the reference plane has a best-fit second circular arc subtending a second angle at a center of curvature of the second circular arc of at least 30 degrees. Reflectance and transmittance of the optical film are described.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: January 9, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert M. Jennings, William T. Fay, Jo A. Etter, Arthur L. Kotz, David J. W. Aastuen
  • Publication number: 20240004117
    Abstract: An optical assembly includes an integral lens assembly having one or more lenses bonded to each other with spaced apart major first and second lens surfaces. First and second optical films are bonded to respective major first and second lens surfaces. The first and second optical films includes a plurality of polymeric layers. Each of the polymeric layers have an average thickness of less than about 500 nm. For a substantially normally incident light and a visible wavelength range the plurality of polymeric layers in the first optical film has an average optical transmittance and an average optical reflectance of greater than about 70% for a first polarization state and an orthogonal second polarization state, respectively. The plurality of polymeric layers in the second optical film has an average optical transmittance of greater than about 70% for at least one of the first and second polarization states.
    Type: Application
    Filed: November 16, 2021
    Publication date: January 4, 2024
    Inventors: John D. Le, Gregg A. Ambur, Zhisheng Yun, Robert M. Jennings, Arthur L. Kotz, Timothy L. Wong, David T. Yust, Timothy J. Nevitt, Kayla A. McGrath
  • Patent number: 11630291
    Abstract: A method of fabricating an optical assembly includes providing a first mold having a first curved mold surface; placing a substantially flat reflective polarizer; on the first curved mold surface and applying at least one of pressure and heat to at least partially conform the reflective polarizer to the first curved mold surface; providing a second mold comprising a second mold surface, the first and second mold surfaces defining a mold cavity therebetween; substantially filling the mold cavity with a flowable material having a temperature greater than a glass transition temperature of the reflective polarizer; and solidifying the flowable material to form a solid optical element bonded to the reflective polarizer. A maximum variation of an orientation of a pass polarization state across the bonded reflective polarizer is within about 3 degrees of a maximum variation of the orientation of the pass polarization state across the substantially flat reflective polarizer.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: April 18, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jo A. Etter, Timothy L. Wong, Zhisheng Yun, Gregg A. Ambur, Benjamin G. Sonnek, Robert M. Jennings
  • Publication number: 20230089314
    Abstract: A curved reflective has at least one location having a radius of curvature in a range from about 6 mm to about 1000 mm. Each location on the reflective polarizer has a maximum reflectance greater than about 70% for a block polarization state, a maximum transmittance greater than about 70% for an orthogonal pass polarization state, and a minimum transmittance for the block polarization state. For a continuous first portion of the reflective polarizer extending between different first and second edges of the reflective polarizer and defining disjoint second and third portions of the reflective polarizer, the minimum transmittance of the reflective polarizer for the block polarization state is higher at each location in at least 70% of the first portion than at each location in at least 70% of the second portion and at each location in at least 70% of the third portion.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 23, 2023
    Inventors: Robert M. Jennings, Gregg A. Ambur, Jo A. Etter, Benjamin G. Sonnek, Zhisheng Yun
  • Publication number: 20230003929
    Abstract: A reflective polarizing imaging lens includes at least one optical film having an active area that is curved in two orthogonal directions. Edges of the optical film are arranged to form seams between segments of the optical film in the active area of the reflective polarizing imaging lens.
    Type: Application
    Filed: September 7, 2022
    Publication date: January 5, 2023
    Inventors: Robert M. Jennings, Jo A. Etter, Susan L. Kent, Erin A. McDowell, Timothy L. Wong, Zhisheng Yun
  • Patent number: 11543572
    Abstract: Shaped optical films and methods of shaping optical films are described. The method includes securing at least portions of a perimeter of the optical film in a first plane so that the secured portions do not move relative to one another; and stretching the optical film by displacing a portion of the optical film along at least a first direction perpendicular to the first plane such that one of a radial and circumferential stretching of the optical film is substantially constant from a center to the perimeter of the optical film, and the other one of the radial and circumferential stretching of the optical film substantially changes from the center to the perimeter of the optical film. The optical film is a reflective polarizer including a plurality of alternating polymeric layers.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 3, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert M. Jennings, Gregg A. Ambur, Jo A. Etter, Benjamin G. Sonnek, Zhisheng Yun
  • Patent number: 11467329
    Abstract: A reflective polarizing imaging lens includes at least one optical film having an active area that is curved in two orthogonal directions. Edges of the optical film are arranged to form seams between segments of the optical film in the active area of the reflective polarizing imaging lens.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: October 11, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert M. Jennings, Jo A. Etter, Susan L. Kent, Erin A. McDowell, Timothy L. Wong, Zhisheng Yun
  • Publication number: 20220274359
    Abstract: An optical film includes a plurality of polymeric layers shaped along orthogonal first and second directions. A first curve being an intersection of the optical film with a first plane orthogonal to the second direction and to a reference plane has a best-fit first circular arc subtending a first angle at a center of curvature of the first circular arc of greater than 180 degrees where the optical film has a maximum projected area in the reference plane. A second curve being an intersection of the optical film with a second plane orthogonal to the first direction and to the reference plane has a best-fit second circular arc subtending a second angle at a center of curvature of the second circular arc of at least 30 degrees. Reflectance and transmittance of the optical film are described.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventors: Robert M. Jennings, William T. Fay, Jo A. Etter, Arthur L. Kotz, David J.W. Aastuen
  • Patent number: 11358355
    Abstract: Optical films having a curved shaped and methods of shaping optical films are described. A method of shaping an optical film includes the steps of disposing the optical film adjacent first and second rollers spaced apart along a first direction, securing opposing first and second ends of the optical film, providing a curved mold surface, and shaping the optical film by contacting the optical film with the curved mold surface while stretching the optical film along the first direction and keeping a threshold distance between closest points on the optical film contacting the first roller and contacting the curved mold surface less than the width of the optical film to reduce buckling of the optical film.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: June 14, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Robert M. Jennings, William T. Fay, Jo A. Etter, Arthur L. Kotz, David J. W. Aastuen
  • Publication number: 20220146803
    Abstract: A method of fabricating an optical assembly includes providing a first mold having a first curved mold surface; placing a substantially flat reflective polarizer; on the first curved mold surface and applying at least one of pressure and heat to at least partially conform the reflective polarizer to the first curved mold surface; providing a second mold comprising a second mold surface, the first and second mold surfaces defining a mold cavity therebetween; substantially filling the mold cavity with a flowable material having a temperature greater than a glass transition temperature of the reflective polarizer; and solidifying the flowable material to form a solid optical element bonded to the reflective polarizer. A maximum variation of an orientation of a pass polarization state across the bonded reflective polarizer is within about 3 degrees of a maximum variation of the orientation of the pass polarization state across the substantially flat reflective polarizer.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 12, 2022
    Inventors: Jo A. Etter, Timothy L. Wong, Zhisheng Yun, Gregg A. Ambur, Benjamin G. Sonnek, Robert M. Jennings
  • Patent number: 11324113
    Abstract: Electrical conductors are disclosed. More particularly, undulating electrical conductors are disclosed. Certain disclosed electrical conductors may be suitable to be disposed on flexible or stretchable substrates.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: May 3, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Nicholas T. Gabriel, Ronald D. Jesme, Andrew J. Ouderkirk, Ravi Palaniswamy, Andrew P. Bonifas, Alejandro Aldrin A. Narag, II, Robert M. Jennings, Robin E. Gorrell
  • Patent number: 11262565
    Abstract: Optical systems for displaying an image are described. The optical systems include spaced apart first and second optical lenses. A partial reflector is disposed on and conforms to a major surface of the first optical lens where the major surface can have a best-fit spherical radius of curvature in a range from 20 mm to 200 mm. A reflective polarizer is disposed on and conforms to a major surface of the second optical lens where the major surface can have a best-fit spherical radius of curvature in a range from 14 mm to 250 mm. A retarder layer is disposed between the reflective polarizer and the partial reflector. The first optical lens can have an optical birefringence of less than 15 nm/cm and the second optical lens can have an optical birefringence of greater than 15 nm/cm. A method of fabricating an optical assembly is described.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: March 1, 2022
    Assignee: 3M INNOVATIPVE PROPERTIES C OMPANY
    Inventors: Jo A. Etter, Timothy L. Wong, Zhisheng Yun, Gregg A. Ambur, Benjamin G. Sonnek, Robert M. Jennings
  • Publication number: 20210278677
    Abstract: A display system includes an optical system and a curved display disposed to emit light toward the optical system. The optical system includes at least a first optical lens, a partial reflector and a reflective polarizer. The optical system has an optical axis such that a light ray propagating along the optical axis passes through the first optical lens the partial reflector and the reflective polarizer without being substantially refracted. At least one major surface of the optical system can be rotationally asymmetric about the optical axis. A major surface of the optical system may have a first portion defined by a first equation and a second portion adjacent the first portion defined by a different equation. The first optical lens may have a contoured edge adapted to be placed adjacent an eye of a viewer and substantially conform to the viewer's face.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 9, 2021
    Inventors: Andrew J. Ouderkirk, Zhisheng Yun, Timothy L. Wong, Erin A. McDowell, Jo A. Etter, Robert M. Jennings
  • Publication number: 20210187885
    Abstract: Optical films having a curved shaped and methods of shaping optical films are described. A method of shaping an optical film includes the steps of disposing the optical film adjacent first and second rollers spaced apart along a first direction, securing opposing first and second ends of the optical film, providing a curved mold surface, and shaping the optical film by contacting the optical film with the curved mold surface while stretching the optical film along the first direction and keeping a threshold distance between closest points on the optical film contacting the first roller and contacting the curved mold surface less than the width of the optical film to reduce buckling of the optical film.
    Type: Application
    Filed: October 23, 2018
    Publication date: June 24, 2021
    Inventors: Robert M. Jennings, William T. Fay, Jo A. Etter, Arthur L. Kotz, David J.W. Aastuen
  • Publication number: 20210129480
    Abstract: A lamination transfer article includes an elastomeric layer with a first major surface including an array of discrete microstructures separated by land areas, wherein the microstructures in the array have a top surface; a first tie layer overlying at least some of the top surfaces of the microstructures of the elastomeric layer, wherein the land areas on the first major surface are uncovered by the first tie layer; and a second layer on a second major surface of the elastomeric layer, wherein the second layer is chosen from a second tie layer and a polymeric carrier film.
    Type: Application
    Filed: February 16, 2018
    Publication date: May 6, 2021
    Inventors: John D. Le, Michael Benton Free, Margot A. Branigan, Susan L. Kent, Michael L. Steiner, Robert M. Jennings, Richard J. Ferguson
  • Publication number: 20200379154
    Abstract: A reflective polarizing imaging lens includes at least one optical film having an active area that is curved in two orthogonal directions. Edges of the optical film are arranged to form seams between segments of the optical film in the active area of the reflective polarizing imaging lens.
    Type: Application
    Filed: February 15, 2019
    Publication date: December 3, 2020
    Inventors: Robert M. Jennings, Jo A. Etter, Susan L. Kent, Erin A. McDowell, Timothy L. Wong, Zhisheng Yun
  • Publication number: 20200241187
    Abstract: Shaped optical films and methods of shaping optical films are described. The method includes securing at least portions of a perimeter of the optical film in a first plane so that the secured portions do not move relative to one another; and stretching the optical film by displacing a portion of the optical film along at least a first direction perpendicular to the first plane such that one of a radial and circumferential stretching of the optical film is substantially constant from a center to the perimeter of the optical film, and the other one of the radial and circumferential stretching of the optical film substantially changes from the center to the perimeter of the optical film. The optical film is a reflective polarizer including a plurality of alternating polymeric layers.
    Type: Application
    Filed: September 28, 2018
    Publication date: July 30, 2020
    Inventors: Robert M. Jennings, Gregg A. Ambur, Jo A. Etter, Benjamin G. Sonnek, Zhisheng Yun
  • Publication number: 20200236780
    Abstract: Electrical conductors are disclosed. More particularly, undulating electrical conductors are disclosed. Certain disclosed electrical conductors may be suitable to be disposed on flexible or stretchable substrates.
    Type: Application
    Filed: April 8, 2020
    Publication date: July 23, 2020
    Inventors: Nicholas T. Gabriel, Ronald D. Jesme, Andrew J. Ouderkirk, Ravi Palaniswamy, Andrew P. Bonifas, Alejandro Aldrin A. Narag, II, Robert M. Jennings, Robin E. Gorrell
  • Patent number: 10653006
    Abstract: Electrical conductors are disclosed. More particularly, undulating electrical conductors are disclosed. Certain disclosed electrical conductors may be suitable to be disposed on flexible or stretchable substrates.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: May 12, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Nicholas T. Gabriel, Ronald D. Jesme, Andrew J. Ouderkirk, Ravi Palaniswamy, Andrew P. Bonifas, Alejandro Aldrin A. Narag, II, Robert M. Jennings, Robin E. Gorrell
  • Publication number: 20200124856
    Abstract: An optical system including at least a first lens, a partial reflector and a reflective polarizer is described. The optical system has an optical axis such that a light ray propagating along the optical axis passes through the first lens the partial reflector and the reflective polarizer without being substantially refracted. At least one major surface of the optical system is rotationally asymmetric about the optical axis. A major surface of the optical system may have a first portion defined by a first equation and a second portion adjacent the first portion defined by a different equation. The first lens may have a contoured edge adapted to be placed adjacent an eye of a viewer and substantially conform to the viewer's face.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Andrew J. Ouderkirk, Zhisheng Yun, Timothy L. Wong, Erin A. McDowell, Jo A. Etter, Robert M. Jennings