Patents by Inventor Robert M. Kennedy

Robert M. Kennedy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230405557
    Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves hydrocarbon chains forming shorter hydrocarbon chains. The catalyst includes metal nanoparticles, such as monometallic nickel or ruthenium nanoparticles or a plurality of nanoparticles of two or more metals, on a metal oxide substrate.
    Type: Application
    Filed: June 20, 2023
    Publication date: December 21, 2023
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Magali S. Ferrandon, Katherine McCullough, Ryan Hackler, Robert M. Kennedy, Massimiliano Delferro, Theodore R. Krause
  • Patent number: 11780985
    Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The nanoparticles exhibit an edge to facet ratio to provide for more interactions with the facets.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: October 10, 2023
    Assignee: UChicago Argonne, LLC
    Inventors: Massimiliano Delferro, Magali S. Ferrandon, Robert M. Kennedy, Gokhan Celik, Ryan Hackler, Kenneth Poeppelmeier, Aaron D. Sadow
  • Patent number: 11751310
    Abstract: An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: September 5, 2023
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, III, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Robert M. Kennedy
  • Publication number: 20230257427
    Abstract: New insecticidal proteins, nucleotides, peptides, their expression in plants, methods of producing the peptides, new processes, production techniques, new peptides, new formulations, and new organisms, a process which increases the insecticidal peptide production yield from yeast expression systems. The present invention is also related and discloses selected endotoxins we call cysteine rich insecticidal peptides (CRIPS) which are peptides derived from Bacillus thuringiensis (Bt) and their genes and endotoxins in combination with toxic peptides known as Inhibitor Cystine Knot (ICK) genes and peptides as well as with other types of insecticidal peptides such as trypsin modulating oostatic factor (TMOF) peptide sequences used in various formulations and combinations; of both genes and peptides, useful for the control of insects.
    Type: Application
    Filed: September 8, 2022
    Publication date: August 17, 2023
    Applicant: Vestaron Corporation
    Inventors: Robert M. KENNEDY, William Tedford, Christopher Hendrickson, Robert Venable, Catherine L. Foune, John Mcintyre, Alvar R. Carlson, Lin Bao
  • Patent number: 11692016
    Abstract: New insecticidal proteins, nucleotides, peptides, their expression in plants, methods of producing the peptides, new processes, production techniques, new peptides, new formulations, new organisms, and a process which increases the insecticidal peptide production yield from yeast expression systems. The present invention is also related to novel cell culture methods and conditions that can be used to express heterologous polypeptides, along with new transgenic yeast strains.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: July 4, 2023
    Inventors: Kyle Schneider, Catherine L. Foune, Lin Bao, Robert Venable, Robert M. Kennedy
  • Publication number: 20230048467
    Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The nanoparticles exhibit an edge to facet ratio to provide for more interactions with the facets.
    Type: Application
    Filed: October 25, 2022
    Publication date: February 16, 2023
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Gokhan Celik, Kimaya Prakash Vyavhare, Robert M. Kennedy, Ryan Hackler, Ali Erdemir, Massimiliano Delferro
  • Patent number: 11535653
    Abstract: A peptide comprised of either a binary or a tertiary peptide, the peptide contains at least 4 amino acids and up to a maximum of 16 amino acids, comprised of 2 or 3 different regions, wherein the binary peptides have 2 different regions and the tertiary peptides have 3 different regions; wherein, the peptide can be cleaved by both an animal gut protease and an insect or nematode gut protease.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: December 27, 2022
    Assignee: VESTARON CORPORATION
    Inventors: Alvar R. Carlson, Alexandra M. Haase, Robert M. Kennedy
  • Publication number: 20220380417
    Abstract: A peptide comprised of either a binary or a tertiary peptide, the peptide contains at least 4 amino acids and up to a maximum of 16 amino acids, comprised of 2 or 3 different regions, wherein the binary peptides have 2 different regions and the tertiary peptides have 3 different regions; wherein, the peptide can be cleaved by both an animal gut protease and an insect or nematode gut protease.
    Type: Application
    Filed: August 12, 2022
    Publication date: December 1, 2022
    Applicant: Vestaron Corporation
    Inventors: Alvar R. CARLSON, Alexandra M. Haase, Robert M. Kennedy
  • Patent number: 11499110
    Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The nanoparticles exhibit an edge to facet ratio to provide for more interactions with the facets.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: November 15, 2022
    Assignee: UChicago Argonne, LLC
    Inventors: Gokhan Celik, Kimaya Prakash Vyavhare, Robert M. Kennedy, Ryan Hackler, Ali Erdemir, Massimiliano Delferro
  • Patent number: 11472854
    Abstract: New insecticidal proteins, nucleotides, peptides, their expression in plants, methods of producing the peptides, new processes, production techniques, new peptides, new formulations, and new organisms, a process which increases the insecticidal peptide production yield from yeast expression systems. The present invention is also related and discloses selected endotoxins we call cysteine rich insecticidal peptides (CRIPS) which are peptides derived from Bacillus thuringiensis (Bt) and their genes and endotoxins in combination with toxic peptides known as Inhibitor Cystine Knot (ICK) genes and peptides as well as with other types of insecticidal peptides such as trypsin modulating oostatic factor (TMOF) peptide sequences used in various formulations and combinations; of both genes and peptides, useful for the control of insects.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: October 18, 2022
    Assignee: Vestaron Corporation
    Inventors: Robert M. Kennedy, William Tedford, Christopher Hendrickson, Robert Venable, Catherine L. Foune, John McIntyre, Alvar R. Carlson, Lin Bao
  • Patent number: 11447531
    Abstract: A peptide comprised of either a binary or a tertiary peptide, the peptide contains at least 4 amino acids and up to a maximum of 16 amino acids, comprised of 2 or 3 different regions, wherein the binary peptides have 2 different regions and the tertiary peptides have 3 different regions; wherein, the peptide can be cleaved by both an animal gut protease and an insect or nematode gut protease.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 20, 2022
    Assignee: Vestaron Corporation
    Inventors: Alvar R. Carlson, Alexandra M. Haase, Robert M. Kennedy
  • Patent number: 11375595
    Abstract: An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: June 28, 2022
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Robert M. Kennedy
  • Patent number: 11357998
    Abstract: A wearable ultraviolet light phototherapy device is disclosed. The wearable ultraviolet light phototherapy device can have a substrate or a housing that is to be worn on a body part of a patient. At least one ultraviolet light emitting source located about the substrate or housing can deliver ultraviolet radiation into the body part of the patient. A control module can control operation of the at least one ultraviolet light emitting source. To this extent, the control module can direct the at least one ultraviolet light emitting source to deliver a predetermined amount of ultraviolet radiation at a peak wavelength into the body part of a patient. The control module can determine the predetermined amount of ultraviolet radiation as a function of the patient's susceptibility to ultraviolet radiation.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: June 14, 2022
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Faris Mills Morrison Estes, Robert M. Kennedy
  • Publication number: 20220081638
    Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The nanoparticles exhibit an edge to facet ratio to provide for more interactions with the facets.
    Type: Application
    Filed: September 11, 2020
    Publication date: March 17, 2022
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Gokhan Celik, Kimaya Prakash Vyavhare, Robert M. Kennedy, Ryan Hackler, Ali Erdemir, Massimiliano Delferro
  • Publication number: 20220048960
    Abstract: New insecticidal proteins, nucleotides, peptides, their expression in plants, methods of producing the peptides, new processes, production techniques, new peptides, new formulations, and new organisms, a process which increases the insecticidal peptide production yield from yeast expression systems. The present disclosure is also related and discloses toxins called AVPs, which are modified from the Av3 toxin derived from sea anemone; here we describe the genes encoding the new polypeptide, as well various formulations and combinations; of both genes and peptides, useful for the control of insects.
    Type: Application
    Filed: September 13, 2019
    Publication date: February 17, 2022
    Applicant: Vestaron Corporation
    Inventors: Robert M. KENNEDY, Lin BAO
  • Patent number: 10994040
    Abstract: An approach for the treatment of surfaces in public places with ultraviolet light is disclosed. In one embodiment, a disinfection illuminator having ultraviolet radiation sources can irradiate a number of contact surfaces. A control unit can control the ultraviolet irradiation of the contact surfaces. The disinfection illuminator is suitable for a wide variety of devices that are used by the general public. Gas station pumps, door knobs, key pads, and bathrooms are illustrative of examples of some devices and places having commonly-used surfaces that can be treated by the disinfection illuminator.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: May 4, 2021
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Robert M. Kennedy, Faris Mills Morrison Estes, Alexander Dobrinsky
  • Publication number: 20210105881
    Abstract: An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 8, 2021
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Robert M. Kennedy
  • Publication number: 20210061971
    Abstract: A method of upcycling polymers to useful hydrocarbon materials. A catalyst with nanoparticles on a substrate selectively docks and cleaves longer hydrocarbon chains over shorter hydrocarbon chains. The nanoparticles exhibit an edge to facet ratio to provide for more interactions with the facets.
    Type: Application
    Filed: August 24, 2020
    Publication date: March 4, 2021
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Massimiliano Delferro, Magali S. Ferrandon, Robert M. Kennedy, Gokhan Celik, Ryan Hackler, Kenneth Poeppelmeier, Aaron D. Sadow
  • Publication number: 20200277345
    Abstract: New insecticidal proteins, nucleotides, peptides, their expression in plants, methods of producing the peptides, new processes, production techniques, new peptides, new formulations, and new organisms, a process which increases the insecticidal peptide production yield from yeast expression systems. The present invention is also related and discloses selected endotoxins we call cysteine rich insecticidal peptides (CRIPS) which are peptides derived from Bacillus thuringiensis (Bt) and their genes and endotoxins in combination with toxic peptides known as Inhibitor Cystine Knot (ICK) genes and peptides as well as with other types of insecticidal peptides such as trypsin modulating oostatic factor (TMOF) peptide sequences used in various formulations and combinations; of both genes and peptides, useful for the control of insects.
    Type: Application
    Filed: May 1, 2020
    Publication date: September 3, 2020
    Applicant: Vestaron Corporation
    Inventors: Robert M. KENNEDY, William TEDFORD, Christopher HENDRICKSON, Robert VENABLE, Catherine L. FOUNE, John MCINTYRE, Alvar R. CARLSON, Lin BAO
  • Publication number: 20200255482
    Abstract: New insecticidal nucleotides, peptides, polypeptides, and proteins, and their expression in plants; methods of producing new peptides; new processes and production techniques; new formulations; new organisms; and a process which increases the insecticidal peptide production yield from yeast expression systems. The present invention is also directed to insecticidal peptides we call cysteine rich insecticidal peptides (CRIPS), and mixtures and/or compositions thereof with pore-forming insecticidal proteins (PFIPs). The present invention also describes mixtures and compositions of CRIPs with Bacillus thuringiensis (Bt), and the genes and/or proteins therefrom, in various formulations and combinations, of both genes and peptides, useful for the control of insects.
    Type: Application
    Filed: May 1, 2020
    Publication date: August 13, 2020
    Applicant: Vestaron Corporation
    Inventors: Robert M. KENNEDY, Lin BAO