Patents by Inventor Robert M. Panas

Robert M. Panas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11641282
    Abstract: Systems and methods performed for generating authentication information for an image using optical computing are provided. When a user takes a photo of an object, an optical authentication system receives light reflected and/or emitted from the object. The system also receives a random key from an authentication server. The system converts the received light to plenoptic data and uploads it to the authentication server. In addition, the system generates an optical hash of the received light using the random key, converts the generated optical hash to a digital optical hash, and uploads the digital optical hash to the authentication server. When the authentication server receives the upload, it verifies whether the time of the upload is within a certain threshold time from the sending of the random key and whether the digital optical hash was generated from the same light as the plenoptic data.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: May 2, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Maxwell R. Murialdo, Brian Giera, Brian M. Howell, Robert M. Panas
  • Publication number: 20230047410
    Abstract: An antenna is provided with sub-apertures whose relative locations change and that are not connected via a mechanical link. a Multi-Body Coherent Aperture Synthesis system supports an antenna with sub-aperture devices that collect views, collect (using an optical link) ranging information (that includes timing information) relating to distance between sub-aperture devices, and transmit the collected views and ranging information to a master device. The master device synthesizes the collected views into a synthesized image based on the ranging information.
    Type: Application
    Filed: August 16, 2021
    Publication date: February 16, 2023
    Inventor: Robert M. Panas
  • Patent number: 11444347
    Abstract: A scaffold of an electrolyte is fabricated in polymer material using 3D printing techniques. A thin layer of solid electrolyte is deposited on the scaffold followed by burning off the polymer. This leaves behind a 3D foam-like solid electrolyte with two distinct non-overlapping volumes. Lithium followed by a conductive layer (for anode) is then deposited through one volume on the first surface whereas a porous or non-porous conductive layer is deposited on the opposite surface through the second volume. The non-porous conductive layer on the second surface is made porous by a selective timed etch.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: September 13, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Sourabh K. Saha, Robert M. Panas
  • Patent number: 11271747
    Abstract: Systems and methods performed for generating authentication information for an image using optical computing are provided. When a user takes a photo of an object, an optical authentication system receives light reflected and/or emitted from the object. The system also receives a random key from an authentication server. The system converts the received light to plenoptic data and uploads it to the authentication server. In addition, the system generates an optical hash of the received light using the random key, converts the generated optical hash to a digital optical hash, and uploads the digital optical hash to the authentication server. When the authentication server receives the upload, it verifies whether the time of the upload is within a certain threshold time from the sending of the random key and whether the digital optical hash was generated from the same light as the plenoptic data.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: March 8, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Maxwell R. Murialdo, Brian Giera, Brian M. Howell, Robert M. Panas
  • Publication number: 20210288815
    Abstract: Systems and methods performed for generating authentication information for an image using optical computing are provided. When a user takes a photo of an object, an optical authentication system receives light reflected and/or emitted from the object. The system also receives a random key from an authentication server. The system converts the received light to plenoptic data and uploads it to the authentication server. In addition, the system generates an optical hash of the received light using the random key, converts the generated optical hash to a digital optical hash, and uploads the digital optical hash to the authentication server. When the authentication server receives the upload, it verifies whether the time of the upload is within a certain threshold time from the sending of the random key and whether the digital optical hash was generated from the same light as the plenoptic data.
    Type: Application
    Filed: May 27, 2021
    Publication date: September 16, 2021
    Inventors: Maxwell R. Murialdo, Brian Giera, Brian M. Howell, Robert M. Panas
  • Publication number: 20210083879
    Abstract: Systems and methods performed for generating authentication information for an image using optical computing are provided. When a user takes a photo of an object, an optical authentication system receives light reflected and/or emitted from the object. The system also receives a random key from an authentication server. The system converts the received light to plenoptic data and uploads it to the authentication server. In addition, the system generates an optical hash of the received light using the random key, converts the generated optical hash to a digital optical hash, and uploads the digital optical hash to the authentication server. When the authentication server receives the upload, it verifies whether the time of the upload is within a certain threshold time from the sending of the random key and whether the digital optical hash was generated from the same light as the plenoptic data.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Inventors: Maxwell R. Murialdo, Brian Giera, Brian M. Howell, Robert M. Panas
  • Publication number: 20200259233
    Abstract: A scaffold of an electrolyte is fabricated in polymer material using 3D printing techniques. A thin layer of solid electrolyte is deposited on the scaffold followed by burning off the polymer. This leaves behind a 3D foam-like solid electrolyte with two distinct non-overlapping volumes. Lithium followed by a conductive layer (for anode) is then deposited through one volume on the first surface whereas a porous or non-porous conductive layer is deposited on the opposite surface through the second volume. The non-porous conductive layer on the second surface is made porous by a selective timed etch.
    Type: Application
    Filed: February 28, 2018
    Publication date: August 13, 2020
    Inventors: Sourabh K. Saha, Robert M. Panas
  • Publication number: 20190352174
    Abstract: A system is disclosed for detecting movement of a microelectromechanical system (MEMS) device. The system may include a drive voltage signal source for generating a drive voltage signal for driving the MEMS device. A modulation voltage signal source generates a modulation signal having a frequency above a physical response capability of the MEMS device. A capacitor voltage divider network may be included having a first capacitor, coupled in series with the modulation voltage signal source, and a capacitance of the MEMS device representing a second capacitor which changes in response to movement of the MEMS device. An output component may be coupled in parallel with the second capacitor and produces an output voltage signal. A filter removes the drive voltage signal from the output voltage signal. The output voltage signal is indicative of a position of the MEMS device.
    Type: Application
    Filed: May 18, 2018
    Publication date: November 21, 2019
    Inventors: Steven L. HUNTER, Robert M. Panas
  • Patent number: 9157476
    Abstract: A double parallelogram linear flexural system and method includes a first stage extending in a direction of movement, and a pair of parallelogram flexures extending from the first stage to distal ends configured for being grounded. A second stage extends parallel to the first stage, with another pair of parallelogram flexures extending between the stages, wherein the stages and parallelogram flexures form a double parallelogram. A linkage is disposed between, and resiliently coupled to, the stages. Linkage guiding flexures extend divergently from the linkage, to distal end portions configured for being grounded. The linkage guiding flexures define a notional triangle having a base extending between the distal end portions, and sides extending through proximal end portions to a notional apex defining a center of rotation for the linkage. The linkage is entirely within the double parallelogram, while constraining the stages to oscillate at the same frequency and phase.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: October 13, 2015
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventor: Robert M. Panas
  • Publication number: 20150003759
    Abstract: A double parallelogram linear flexural system and method includes a first stage extending in a direction of movement, and a pair of parallelogram flexures extending from the first stage to distal ends configured for being grounded. A second stage extends parallel to the first stage, with another pair of parallelogram flexures extending between the stages, wherein the stages and parallelogram flexures form a double parallelogram. A linkage is disposed between, and resiliently coupled to, the stages. Linkage guiding flexures extend divergently from the linkage, to distal end portions configured for being grounded. The linkage guiding flexures define a notional triangle having a base extending between the distal end portions, and sides extending through proximal end portions to a notional apex defining a center of rotation for the linkage. The linkage is entirely within the double parallelogram, while constraining the stages to oscillate at the same frequency and phase.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventor: Robert M. Panas
  • Patent number: 7884525
    Abstract: A nano-scale compliant mechanism includes a coupler and a plurality of nanotubes disposed for nano-scale motion relative to a grounded component. The nanotubes are fastened at one end to the coupler and at the other end to ground, to guide motion of the coupler relative to the ground. Particular embodiments include a plurality of parallel carbon nanotubes. An exemplary embodiment exhibits first and second regions of mechanical behavior; a first region governed by bulk elastic deformation of the nanotubes and a second region governed by compliant, hinge-like bending of the buckled nanotubes.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: February 8, 2011
    Assignees: Massachusetts Institute of Technology, Brigham Young University
    Inventors: Martin L. Culpepper, Spencer P. Magleby, Larry L. Howell, Christopher M. DiBiasio, Robert M. Panas
  • Publication number: 20080144304
    Abstract: A nano-scale compliant mechanism includes a coupler and a plurality of nanotubes disposed for nano-scale motion relative to a grounded component. The nanotubes are fastened at one end to the coupler and at the other end to ground, to guide motion of the coupler relative to the ground. Particular embodiments include a plurality of parallel carbon nanotubes. An exemplary embodiment exhibits first and second regions of mechanical behavior; a first region governed by bulk elastic deformation of the nanotubes and a second region governed by compliant, hinge-like bending of the buckled nanotubes.
    Type: Application
    Filed: August 1, 2007
    Publication date: June 19, 2008
    Inventors: Martin L. Culpepper, Spencer P. Magleby, Larry L. Howell, Christopher M. DiBlasio, Robert M. Panas