Patents by Inventor Robert M. Porter

Robert M. Porter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8454208
    Abstract: The current inventive technology relates to methods and apparatus for a providing an energy efficient and durable landscape lamp. The lamp can retract when not in use to prevent damage. The high efficiency retractable landscape lamp of this invention may be powered by conventional distributed low voltage or by a solar photovoltaic (PV) source. In some embodiments the lamp may be powered by low voltage, it may be individually interchangeable with a conventional low voltage landscape lamp or may be installed in a low voltage lighting complete system. This lamp may house the electrical components and gearmotor in an upper dry compartment making it reliable in outdoor installations, even in wet environments. This invention can also relate to operation without the need for unreliable limit switches for the raising and lowering of the lamp.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: June 4, 2013
    Assignee: Catapult Engineering, LLC
    Inventor: Robert M. Porter
  • Publication number: 20120286688
    Abstract: The current inventive technology relates to methods and apparatus for a providing an energy efficient and durable landscape lamp. The lamp can retract when not in use to prevent damage. The high efficiency retractable landscape lamp of this invention may be powered by conventional distributed low voltage or by a solar photovoltaic (PV) source. In some embodiments the lamp may be powered by low voltage, it may be individually interchangeable with a conventional low voltage landscape lamp or may be installed in a low voltage lighting complete system. This lamp may house the electrical components and gearmotor in an upper dry compartment making it reliable in outdoor installations, even in wet environments. This invention can also relate to operation without the need for unreliable limit switches for the raising and lowering of the lamp.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 15, 2012
    Applicant: CATAPULT ENGINEERING, LLC
    Inventor: Robert M. Porter
  • Patent number: 8304932
    Abstract: Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source (1) or strings of panels (11) for DC or AC use, perhaps for transfer to a power grid (10) three aspects can exist perhaps independently and relate to: 1) electrical power conversion in a multimodal manner, 2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control (27), and 3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements (24) and pairs of photovoltaic power shunt switch elements (25).
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: November 6, 2012
    Assignee: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Patent number: 8242634
    Abstract: A solar energy system (55) has aspects that can allow individualized control and analysis for overall field power control that can be used while harvesting maximum power from a solar energy source (1) and a string of solar panels (11) for a power grid (10). The invention provides control of power at high efficiency with aspects that can exist independently including: 1) power management with switch disconnect control (64), 2) sequenced start of a solar power system, 3) providing a safety output system that can be handled by installers and maintenance and advantageously controlled, 4) providing programmable power functionality controller (86) either on site or remotely from an administrative facility by radio transmission individual solar panel disconnect control (85), 5) a system with pattern analyzer (87) for operational, installation, and maintenance indications, and 6) systems with individual solar panel string power simulator (89) for disparate components.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 14, 2012
    Assignee: AMPT, LLC
    Inventors: Douglas S. Schatz, Robert M. Porter, Anatoli Ledenev
  • Patent number: 8186857
    Abstract: The current inventive technology relates to methods and apparatus for a providing an energy efficient and durable landscape lamp. The lamp can retract when not in use to prevent damage. The high efficiency retractable landscape lamp of this invention may be powered by conventional distributed low voltage or by a solar photovoltaic (PV) source. In some embodiments the lamp may be powered by low voltage, it may be individually interchangeable with a conventional low voltage landscape lamp or may be installed in a low voltage lighting complete system. This lamp may house the electrical components and gearmotor in an upper dry compartment making it reliable in outdoor installations, even in wet environments. This invention can also relate to operation without the need for unreliable limit switches for the raising and lowering of the lamp.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: May 29, 2012
    Inventor: Robert M. Porter
  • Publication number: 20120104864
    Abstract: A renewable electrical energy power system is provided with aspects and circuitry that can optimize operation of a DC-AC inverter. Alternative electrical energy sources may include solar cells and solar panels. In various embodiments, the system may include solar panel maximum power point independent inverter input optimization photovoltaic power control circuitry, inverter efficiency optimized converter control circuitry, inverter voltage input set point converter output voltage control circuitry, inverter sweet spot converter control circuitry, photovoltaic inverter duty cycle switch control circuitry, substantially power isomorphic photovoltaic inverter input control circuitry, and substantially power isomorphic photovoltaic inverter duty cycle control circuitry.
    Type: Application
    Filed: January 9, 2012
    Publication date: May 3, 2012
    Applicant: AMPT, LLC
    Inventors: Robert M. Porter, Anatoli Ledenev
  • Publication number: 20120032515
    Abstract: The DC-AC inversion of solar power in systems having high voltage, highly varying photovoltaic power sources may be provided to optimize input into a high voltage, high power photovoltaic DC-AC inverter. The inverter may coordinate the conversion of solar power in photovoltaic DC-DC power converters to achieve a desired inverter operating condition. Desired inverter operating conditions may include singular voltage inputs, optimal voltage inputs, inverter sweet spot voltage inputs, and the like. The converters may be coordinated to convert output to optimal input characteristics of the inverter, to control a posterior photovoltaic operating condition, to control the converter for inverter operating conditions, and the like. Output from the inverter may be transferred to a power grid at high power levels with coordinated control possible for various elements.
    Type: Application
    Filed: October 17, 2011
    Publication date: February 9, 2012
    Applicant: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Patent number: 8093756
    Abstract: Renewable electrical energy is provided with aspects and circuitry that can harvest maximum power from an alternative electrical energy source (1) such as a string of solar panels (11) for a power grid (10). Aspects include: i) controlling electrical power creation from photovoltaic DC-AC inverter (5), ii) operating photovoltaic DC-AC inverter (5) at maximal efficiency even when MPP would not be, iii) protecting DC-AC inverter (5) so input can vary over a range of insolation and temperature, and iv) providing dynamically reactive capability to react and assure operation, to permit differing components, to achieve code compliant dynamically reactive photovoltaic power control circuitry (41). With previously explained converters, inverter control circuitry (38) or photovoltaic power converter functionality control circuitry (8) configured as inverter sweet spot converter control circuitry (46) can achieve extraordinary efficiencies with substantially power isomorphic photovoltaic capability at 99.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: January 10, 2012
    Assignee: AMPT, LLC
    Inventors: Robert M. Porter, Anatoli Ledenev
  • Publication number: 20110316346
    Abstract: Methods and apparatus may provide for the adaptive operation of a solar power system (3). Solar energy sources (1) and photovoltaic DC-DC power converters (2) may be interconnected in serial, parallel, or combined arrangements. DC photo-voltaic power conversion may be accomplished utilizing dynamically adjustable voltage output limits (8) of photovoltaic DC-DC power converters (2). A photovoltaic DC-DC power converter (2) may include at least one external state data interface (7) receptive to at least one external state parameter of a solar power system (3). A dynamically adjustable voltage output limit control (12) may be used to relationally set a dynamically adjustable voltage output limit (8) of a photovoltaic DC-DC power converter (2). Dynamically adjusting voltage output limits (8) may be done in relation to external state parameter information to achieve desired system results.
    Type: Application
    Filed: April 17, 2009
    Publication date: December 29, 2011
    Applicant: AMPT, LLC
    Inventors: Robert M. Porter, Anatoli Ledenev
  • Publication number: 20110285205
    Abstract: Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source (1) or strings of panels (11) for DC or AC use, perhaps for transfer to a power grid (10) three aspects can exist perhaps independently and relate to: 1) electrical power conversion in a multimodal manner, 2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control (27), and 3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements (24) and pairs of photovoltaic power shunt switch elements (25).
    Type: Application
    Filed: July 27, 2011
    Publication date: November 24, 2011
    Applicant: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Publication number: 20110228545
    Abstract: The current inventive technology relates to methods and apparatus for a providing an energy efficient and durable landscape lamp. The lamp can retract when not in use to prevent damage. The high efficiency retractable landscape lamp of this invention may be powered by conventional distributed low voltage or by a solar photovoltaic (PV) source. In some embodiments the lamp may be powered by low voltage, it may be individually interchangeable with a conventional low voltage landscape lamp or may be installed in a low voltage lighting complete system. This lamp may house the electrical components and gearmotor in an upper dry compartment making it reliable in outdoor installations, even in wet environments. This invention can also relate to operation without the need for unreliable limit switches for the raising and lowering of the lamp.
    Type: Application
    Filed: May 12, 2011
    Publication date: September 22, 2011
    Applicant: CATAPULT ENGINEERING, LLC
    Inventor: Robert M. Porter
  • Publication number: 20110210611
    Abstract: Particular embodiments of the inventive technology disclosed herein seek to reduce or eliminate the risk of damage to components of photovoltaic power circuits such as solar arrays. Aspects of the inventive technology, in embodiments, utilize diode to prevent reverse current flow in the event of application of a voltage to a power supply string which would otherwise effect such flow. Prevention of such reverse current flow may preclude voltages that would otherwise damage reverse current sensitive devices such as switches that may form part of a voltage limiting DC to DC converter.
    Type: Application
    Filed: October 10, 2008
    Publication date: September 1, 2011
    Applicant: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Patent number: 8004116
    Abstract: Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source (1) or strings of panels (11) for DC or AC use, perhaps for transfer to a power grid (10) three aspects can exist perhaps independently and relate to: 1) electrical power conversion in a multimodal manner, 2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control (27), and 3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements (24) and pairs of photovoltaic power shunt switch elements (25).
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: August 23, 2011
    Assignee: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Publication number: 20110181251
    Abstract: Reliability enhanced systems are shown where an short-lived electrolytic capacitor can be replaced by a much smaller, perhaps film type, longer-lived capacitor to be implemented in circuits for power factor correction, solar power conversion, or otherwise to achieve DC voltage smoothing with circuitry that has solar photovoltaic source (1) a DC photovoltaic input (2) internal to a device (3) and uses an enhanced DC-DC power converter (4) to provide a smoothed DC output (6) with capacitor substitution circuitry (14) that may include interim signal circuitry (28) that creates a large voltage variation for a replaced capacitor (16). Switchmode designs may include first and second switch elements (17) and (18) and an alternative path controller (21) that operates a boost controller (22) and a buck controller (23) perhaps with a switch duty cycle controller (32).
    Type: Application
    Filed: April 1, 2011
    Publication date: July 28, 2011
    Applicant: AMPT, LLC
    Inventors: Robert M. Porter, Anatoli Ledenev
  • Patent number: 7919953
    Abstract: Reliability enhanced systems are shown where an short-lived electrolytic capacitor can be replaced by a much smaller, perhaps film type, longer-lived capacitor to be implemented in circuits for power factor correction, solar power conversion, or otherwise to achieve DC voltage smoothing with circuitry that has solar photovoltaic source (1) a DC photovoltaic input (2) internal to a device (3) and uses an enhanced DC-DC power converter (4) to provide a smoothed DC output (6) with capacitor substitution circuitry (14) that may include interim signal circuitry (28) that creates a large voltage variation for a replaced capacitor (16). Switchmode designs may include first and second switch elements (17) and (18) and an alternative path controller (21) that operates a boost controller (22) and a buck controller (23) perhaps with a switch duty cycle controller (32).
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: April 5, 2011
    Assignee: AMPT, LLC
    Inventors: Robert M. Porter, Anatoli Ledenev
  • Publication number: 20110067745
    Abstract: Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source (1) or strings of panels (11) for DC or AC use, perhaps for transfer to a power grid (10) three aspects can exist perhaps independently and relate to: 1) electrical power conversion in a multimodal manner, 2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control (27), and 3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements (24) and pairs of photovoltaic power shunt switch elements (25).
    Type: Application
    Filed: November 29, 2010
    Publication date: March 24, 2011
    Applicant: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Publication number: 20100308662
    Abstract: A solar energy system (55) has aspects that can allow individualized control and analysis for overall field power control that can be used while harvesting maximum power from a solar energy source (1) and a string of solar panels (11) for a power grid (10). The invention provides control of power at high efficiency with aspects that can exist independently including: 1) power management with switch disconnect control (64), 2) sequenced start of a solar power system, 3) providing a safety output system that can be handled by installers and maintenance and advantageously controlled, 4) providing programmable power functionality controller (86) either on site or remotely from an administrative facility by radio transmission individual solar panel disconnect control (85), 5) a system with pattern analyzer (87) for operational, installation, and maintenance indications, and 6) systems with individual solar panel string power simulator (89) for disparate components.
    Type: Application
    Filed: July 18, 2008
    Publication date: December 9, 2010
    Applicant: AMPT, LLC
    Inventors: Douglas S. Schatz, Robert M. Porter, Anatoli Ledenev
  • Patent number: 7843085
    Abstract: Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source (1) or strings of panels (11) for DC or AC use, perhaps for transfer to a power grid (10) three aspects can exist perhaps independently and relate to: 1) electrical power conversion in a multimodal manner, 2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control (27), and 3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements (24) and pairs of photovoltaic power shunt switch elements (25).
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: November 30, 2010
    Assignee: AMPT, LLC
    Inventors: Anatoli Ledenev, Robert M. Porter
  • Publication number: 20100253150
    Abstract: Renewable electrical energy is provided with aspects and circuitry that can harvest maximum power from an alternative electrical energy source (1) such as a string of solar panels (11) for a power grid (10). Aspects include: i) controlling electrical power creation from photovoltaic DC-AC inverter (5), ii) operating photovoltaic DC-AC inverter (5) at maximal efficiency even when MPP would not be, iii) protecting DC-AC inverter (5) so input can vary over a range of insolation and temperature, and iv) providing dynamically reactive capability to react and assure operation, to permit differing components, to achieve code compliant dynamically reactive photovoltaic power control circuitry (41). With previously explained converters, inverter control circuitry (38) or photovoltaic power converter functionality control circuitry (8) configured as inverter sweet spot converter control circuitry (46) can achieve extraordinary efficiencies with substantially power isomorphic photovoltaic capability at 99.
    Type: Application
    Filed: April 15, 2008
    Publication date: October 7, 2010
    Applicant: AMPT, LLC
    Inventors: Robert M. Porter, Anatoli Ledenev
  • Publication number: 20100246230
    Abstract: Reliability enhanced systems are shown where an short-lived electrolytic capacitor can be replaced by a much smaller, perhaps film type, longer-lived capacitor to be implemented in circuits for power factor correction, solar power conversion, or otherwise to achieve DC voltage smoothing with circuitry that has solar photovoltaic source (1) a DC photovoltaic input (2) internal to a device (3) and uses an enhanced DC-DC power converter (4) to provide a smoothed DC output (6) with capacitor substitution circuitry (14) that may include interim signal circuitry (28) that creates a large voltage variation for a replaced capacitor (16). Switchmode designs may include first and second switch elements (17) and (18) and an alternative path controller (21) that operates a boost controller (22) and a buck controller (23) perhaps with a switch duty cycle controller (32).
    Type: Application
    Filed: October 22, 2008
    Publication date: September 30, 2010
    Applicant: AMPT, LLC
    Inventors: Robert M. Porter, Anatoli Ledenev