Patents by Inventor Robert M. Rassel
Robert M. Rassel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9412736Abstract: In an approach to fabricating a silicon on insulator wafer, one or more semiconductor device elements are implanted and one or more shallow trench isolations are formed on a top surface of a first semiconductor wafer. A first dielectric material layer is deposited over the top surface of the first semiconductor wafer, filling the shallow trench isolations. A dielectric material layer on a bottom surface of a second semiconductor wafer is bonded to a dielectric material layer on the top of the first semiconductor wafer and one or more semiconductor devices are formed on a top surface of the second semiconductor wafer. Then, one or more through silicon vias are created connecting the one or more semiconductor devices on the top surface of the second semiconductor wafer and the one or more semiconductor device elements on the top surface of the first semiconductor wafer.Type: GrantFiled: June 5, 2014Date of Patent: August 9, 2016Assignee: GLOBALFOUNDRIES INC.Inventors: Yan Ding, Vibhor Jain, Thomas Kessler, Yves T. Ngu, Robert M. Rassel, Sebastian T. Ventrone
-
Patent number: 9406562Abstract: Embodiments of the invention provide an integrated circuit (IC) having reduced through silicon via (TSV)-induced stresses and related IC design structures and methods. In one embodiment, the invention includes a method of designing an integrated circuit (IC) having reduced substrate stress, the method including: placing in an IC design file a plurality of through silicon via (TSV) placeholder cells, each placeholder cell having an undefined TSV orientation; replacing a first portion of the plurality of TSV placeholder cells with a first group of TSV cells having a first orientation; and replacing a second portion of the plurality of TSV placeholder cells with a second group of TSV cells having a second orientation substantially perpendicular to the first orientation, wherein TSV cells having the first orientation and TSV cells having the second orientation are interspersed to reduce a TSV-induced stress in an IC substrate.Type: GrantFiled: January 13, 2011Date of Patent: August 2, 2016Assignee: GlobalFoundries, Inc.Inventors: Jeffrey P. Bonn, Brent A. Goplen, Brian L. Kinsman, Robert M. Rassel, Edmund J. Sprogis, Daniel S. Vanslette
-
Patent number: 9257324Abstract: A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.Type: GrantFiled: March 31, 2014Date of Patent: February 9, 2016Assignee: GLOBALFOUNDRIES INC.Inventors: Alan B. Botula, Renata Camillo-Castillo, James S. Dunn, Jeffrey P. Gambino, Douglas B. Hershberger, Alvin J. Joseph, Robert M. Rassel, Mark E. Stidham
-
Publication number: 20150357325Abstract: In an approach to fabricating a silicon on insulator wafer, one or more semiconductor device elements are implanted and one or more shallow trench isolations are formed on a top surface of a first semiconductor wafer. A first dielectric material layer is deposited over the top surface of the first semiconductor wafer, filling the shallow trench isolations. A dielectric material layer on a bottom surface of a second semiconductor wafer is bonded to a dielectric material layer on the top of the first semiconductor wafer and one or more semiconductor devices are formed on a top surface of the second semiconductor wafer. Then, one or more through silicon vias are created connecting the one or more semiconductor devices on the top surface of the second semiconductor wafer and the one or more semiconductor device elements on the top surface of the first semiconductor wafer.Type: ApplicationFiled: June 5, 2014Publication date: December 10, 2015Inventors: Yan Ding, Vibhor Jain, Thomas Kessler, Yves T. Ngu, Robert M. Rassel, Sebastian T. Ventrone
-
Patent number: 9087925Abstract: Semiconductor structures and methods of forming semiconductor structures, and more particularly to structures and methods of forming SiGe and/or SiGeC buried layers for SOI/SiGe devices. An integrated structure includes discontinuous, buried layers having alternating Si and SiGe or SiGeC regions. The structure further includes isolation structures at an interface between the Si and SiGe or SiGeC regions to reduce defects between the alternating regions. Devices are associated with the Si and SiGe or SiGeC regions.Type: GrantFiled: June 1, 2011Date of Patent: July 21, 2015Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Xuefeng Liu, Robert M. Rassel, Steven H. Voldman
-
Patent number: 9041105Abstract: An Integrated Circuit (IC) and a method of making the same. In one embodiment, the IC includes: a substrate; a first semiconductor layer disposed on the substrate; a shallow trench isolation (STI) extending through the first semiconductor layer to within a portion of the substrate, the STI substantially separating a first n+ region and a second n+ region; and a gate disposed on a portion of the first semiconductor layer and connected to the STI, the gate including: a buried metal oxide (BOX) layer disposed on the first semiconductor layer and connected to the STI; a cap layer disposed on the BOX layer; and a p-type well component disposed within the first semiconductor layer and the substrate, the p-type well component connected to the second n+ region.Type: GrantFiled: July 20, 2012Date of Patent: May 26, 2015Assignee: International Business Machines CorporationInventors: William F. Clark, Jr., Qizhi Liu, Robert M. Rassel, Yun Shi
-
Patent number: 8921172Abstract: Disclosed are embodiments of a junction field effect transistor (JFET) structure with one or more P-type silicon germanium (SiGe) or silicon germanium carbide (SiGeC) gates (i.e., a SiGe or SiGeC based heterojunction JFET). The P-type SiGe or SiGeC gate(s) allow for a lower pinch off voltage (i.e., lower Voff) without increasing the on resistance (Ron). Specifically, SiGe or SiGeC material in a P-type gate limits P-type dopant out diffusion and, thereby ensures that the P-type gate-to-N-type channel region junction is more clearly defined (i.e., abrupt as opposed to graded). By clearly defining this junction, the depletion layer in the N-type channel region is extended. Extending the depletion layer in turn allows for a faster pinch off (i.e., requires lower Voff). P-type SiGe or SiGeC gate(s) can be incorporated into conventional lateral JFET structures and/or vertical JFET structures. Also disclosed herein are embodiments of a method of forming such a JFET structure.Type: GrantFiled: April 29, 2014Date of Patent: December 30, 2014Assignee: International Business Machines CorporationInventors: Xuefeng Liu, Richard A. Phelps, Robert M. Rassel, Xiaowei Tian
-
Patent number: 8912597Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate including a first source drain region, a second source drain region, and an intrinsic region therebetween; an asymmetric lightly doped drain (LDD) region within the substrate, wherein the asymmetric LDD region extends from the first source drain region into the intrinsic region between the first source drain region and the second source drain region; and a gate positioned atop the semiconductor substrate, wherein an outer edge of the gate overlaps the second source drain region. A related method and design structure are also disclosed.Type: GrantFiled: July 19, 2013Date of Patent: December 16, 2014Assignee: International Business Machines CorporationInventors: Alan B. Botula, Robert M. Rassel, Yun Shi, Mark E. Stidham
-
Patent number: 8881379Abstract: A resistor with heat sink is provided. The heat sink includes a conductive path having metal or other thermal conductor having a high thermal conductivity. To avoid shorting the electrical resistor to ground with the thermal conductor, a thin layer of high thermal conductivity electrical insulator is interposed between the thermal conductor and the body of the resistor. Accordingly, a resistor can carry large amounts of current because the high conductivity thermal conductor will conduct heat away from the resistor to a heat sink. Various configurations of thermal conductors and heat sinks are provided offering good thermal conductive properties in addition to reduced parasitic capacitances and other parasitic electrical effects, which would reduce the high frequency response of the electrical resistor.Type: GrantFiled: May 1, 2012Date of Patent: November 11, 2014Assignee: International Business Machines CorporationInventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Terence B. Hook, Robert M. Rassel, Edmund J. Sprogis, Anthony K. Stamper, William J. Murphy
-
Patent number: 8872281Abstract: A trench contact silicide is formed on an inner wall of a contact trench that reaches to a buried conductive layer in a semiconductor substrate to reduce parasitic resistance of a reachthrough structure. The trench contact silicide is formed at the bottom, on the sidewalls of the trench, and on a portion of the top surface of the semiconductor substrate. The trench is subsequently filled with a middle-of-line (MOL) dielectric. A contact via may be formed on the trench contact silicide. The trench contact silicide may be formed through a single silicidation reaction with a metal layer or through multiple silicidation reactions with multiple metal layers.Type: GrantFiled: August 9, 2012Date of Patent: October 28, 2014Assignee: International Business Machines CorporationInventors: Douglas D. Coolbaugh, Jeffrey B. Johnson, Peter J. Lindgren, Xuefeng Lie, James S. Nakos, Bradley A. Omer, Robert M. Rassel, David C. Sheridan
-
Patent number: 8871600Abstract: Schottky barrier diodes, methods for fabricating Schottky barrier diodes, and design structures for a Schottky barrier diode. A guard ring for a Schottky barrier diode is formed with a selective epitaxial growth process. The guard ring for the Schottky barrier diode and an extrinsic base of a vertical bipolar junction diode on a different device region than the Schottky barrier diode may be concurrently formed using the same selective epitaxial growth process.Type: GrantFiled: November 11, 2011Date of Patent: October 28, 2014Assignee: International Business Machines CorporationInventors: David L. Harame, Qizhi Liu, Robert M. Rassel
-
Publication number: 20140312453Abstract: Schottky barrier diodes, methods for fabricating Schottky barrier diodes, and design structures for a Schottky barrier diode. A guard ring for a Schottky barrier diode is formed with a selective epitaxial growth process. The guard ring for the Schottky barrier diode and an extrinsic base of a vertical bipolar junction diode on a different device region than the Schottky barrier diode may be concurrently formed using the same selective epitaxial growth process.Type: ApplicationFiled: July 3, 2014Publication date: October 23, 2014Inventors: David L. Harame, Qizhi Liu, Robert M. Rassel
-
Publication number: 20140239498Abstract: A trench contact silicide is formed on an inner wall of a contact trench that reaches to a buried conductive layer in a semiconductor substrate to reduce parasitic resistance of a reachthrough structure. The trench contact silicide is formed at the bottom, on the sidewalls of the trench, and on a portion of the top surface of the semiconductor substrate. The trench is subsequently filled with a middle-of-line (MOL) dielectric. A contact via may be formed on the trench contact silicide. The trench contact silicide may be formed through a single silicidation reaction with a metal layer or through multiple silicidation reactions with multiple metal layers.Type: ApplicationFiled: August 9, 2012Publication date: August 28, 2014Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Douglas D. Coolbaugh, Jeffrey B. Johnson, Peter J. Lindgren, Xuefeng Liu, James S. Nakos, Bradley A. Orner, Robert M. Rassel, David C. Sheridan
-
Publication number: 20140235021Abstract: Disclosed are embodiments of a junction field effect transistor (JFET) structure with one or more P-type silicon germanium (SiGe) or silicon germanium carbide (SiGeC) gates (i.e., a SiGe or SiGeC based heterojunction JFET). The P-type SiGe or SiGeC gate(s) allow for a lower pinch off voltage (i.e., lower Voff) without increasing the on resistance (Ron). Specifically, SiGe or SiGeC material in a P-type gate limits P-type dopant out diffusion and, thereby ensures that the P-type gate-to-N-type channel region junction is more clearly defined (i.e., abrupt as opposed to graded). By clearly defining this junction, the depletion layer in the N-type channel region is extended. Extending the depletion layer in turn allows for a faster pinch off (i.e., requires lower Voff). P-type SiGe or SiGeC gate(s) can be incorporated into conventional lateral JFET structures and/or vertical JFET structures. Also disclosed herein are embodiments of a method of forming such a JFET structure.Type: ApplicationFiled: April 29, 2014Publication date: August 21, 2014Applicant: International Business Machines CorporationInventors: Xuefeng Liu, Richard A. Phelps, Robert M. Rassel, Xiaowei Tian
-
Patent number: 8809155Abstract: Device structures, design structures, and fabrication methods for a varactor. The device structure includes a first electrode formed on a dielectric layer, and a semiconductor body formed on the first electrode. The semiconductor body is comprised of a silicon-containing semiconductor material in an amorphous state or a polycrystalline state. The device structure further includes an electrode insulator formed on the semiconductor body and a second electrode formed on the electrode insulator.Type: GrantFiled: October 4, 2012Date of Patent: August 19, 2014Assignee: International Business Machines CorporationInventors: John J. Ellis-Monaghan, Michael J. Hauser, Zhong-Xiang He, Xuefeng Liu, Richard A. Phelps, Robert M. Rassel, Anthony K. Stamper
-
Patent number: 8809998Abstract: An Integrated Circuit (IC) and a method of making the same. In one embodiment, the IC includes: a substrate; a first set of trenches formed in a first surface of the substrate; a second set of trenches formed in a second surface of the substrate; and at least one through silicon via connecting the first set of trenches and the second set of trenches.Type: GrantFiled: October 26, 2011Date of Patent: August 19, 2014Assignee: International Business Machines CorporationInventors: Renata A. Camillo-Castillo, John J. Ellis-Monaghan, Robert M. Rassel, Daniel S. Vanslette
-
Publication number: 20140213036Abstract: A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.Type: ApplicationFiled: March 31, 2014Publication date: July 31, 2014Applicant: International Business Machines CorporationInventors: Alan B. Botula, Renata Camillo-Castillo, James S. Dunn, Jeffrey P. Gambino, Douglas B. Hershberger, Alvin J. Joseph, Robert M. Rassel, Mark E. Stidham
-
Patent number: 8779476Abstract: A junction gate field-effect transistor (JFET) for an integrated circuit (IC) chip is provided comprising a source region, a drain region, a lower gate, and a channel, with an insulating shallow trench isolation (STI) region extending from an inner edge of an upper surface of the source region to an inner edge of an upper surface of the drain region, without an intentionally doped region, e.g., an upper gate, coplanar with an upper surface of the IC chip between the source/drain regions. In addition, an asymmetrical quasi-buried upper gate can be included, disposed under a portion of the STI region, but not extending under a portion of the STI region proximate to the drain region. Embodiments of this invention also include providing an implantation layer, under the source region, to reduce Ron. A related method and design structure are also disclosed.Type: GrantFiled: April 25, 2013Date of Patent: July 15, 2014Assignee: International Business Machines CorporationInventors: Xuefeng Liu, Richard A. Phelps, Robert M. Rassel, Xiaowei Tian
-
Patent number: 8754455Abstract: Disclosed are embodiments of a junction field effect transistor (JFET) structure with one or more P-type silicon germanium (SiGe) or silicon germanium carbide (SiGeC) gates (i.e., a SiGe or SiGeC based heterojunction JFET). The P-type SiGe or SiGeC gate(s) allow for a lower pinch off voltage (i.e., lower Voff) without increasing the on resistance (Ron). Specifically, SiGe or SiGeC material in a P-type gate limits P-type dopant out diffusion and, thereby ensures that the P-type gate-to-N-type channel region junction is more clearly defined (i.e., abrupt as opposed to graded). By clearly defining this junction, the depletion layer in the N-type channel region is extended. Extending the depletion layer in turn allows for a faster pinch off (i.e., requires lower Voff). P-type SiGe or SiGeC gate(s) can be incorporated into conventional lateral JFET structures and/or vertical JFET structures. Also disclosed herein are embodiments of a method of forming such a JFET structure.Type: GrantFiled: January 3, 2011Date of Patent: June 17, 2014Assignee: International Business Machines CorporationInventors: Xuefeng Liu, Richard A. Phelps, Robert M. Rassel, Xiaowei Tian
-
Patent number: 8735986Abstract: A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.Type: GrantFiled: December 6, 2011Date of Patent: May 27, 2014Assignee: International Business Machines CorporationInventors: Alan B. Botula, Renata Camillo-Castillo, James S. Dunn, Jeffrey P. Gambino, Douglas B. Hershberger, Alvin J. Joseph, Robert M. Rassel, Mark E. Stidham