Patents by Inventor Robert Marc Lebel

Robert Marc Lebel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230341490
    Abstract: A computer-implemented method of reducing noise in magnetic resonance (MR) images is provided. The method includes executing a neural network model of analyzing MR images, wherein the neural network model is trained with a pair of pristine images and corrupted images. The pristine images are the corrupted images with noise reduced, and target output images of the neural network model are the pristine images. The method also includes receiving first MR signals and second MR signals, reconstructing first and second MR images based on the first MR signals and the second MR signals, and analyzing the first MR image and the second MR image using the neural network model. The method further includes deriving a denoised MR image based on the analysis, wherein the denoised MR image is a combined image based on the first MR image and the second MR image and outputting the denoised MR image.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 26, 2023
    Inventors: Kang Wang, Robert Marc Lebel
  • Patent number: 11783451
    Abstract: Methods and systems are provided for de-noising medical images using deep neural networks. In one embodiment, a method comprises receiving a medical image acquired by an imaging system, wherein the medical image comprises colored noise; mapping the medical image to a de-noised medical image using a trained convolutional neural network (CNN); and displaying the de-noised medical image via a display device. The deep neural network may thereby reduce colored noise in the acquired noisy medical image, increasing a clarity and diagnostic quality of the image.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: October 10, 2023
    Assignee: GE Precision Healthcare LLC
    Inventors: Daniel Litwiller, Xinzeng Wang, Ali Ersoz, Robert Marc Lebel, Ersin Bayram, Graeme Colin McKinnon
  • Publication number: 20230196556
    Abstract: A magnetic resonance (MR) image processing system is provided. The system includes an MR image processing computing device that includes at least one processor. The processor is programmed to execute a neural network model configured to receive crude MR data as an input and output processed MR images associated with the crude MR data, the crude MR data and the processed MR images having the first number of dimensions. The processor is also programmed to receive a pair of pristine data and corrupted data both having a second number of dimensions lower than the first number of dimensions. The corrupted data are the pristine data added with primitive features. The processor is further programmed to train the neural network model using the pair of the pristine data and the corrupted data. The trained neural network model is configured to change primitive features associated with the crude MR data.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Inventors: Robert Marc Lebel, Suryanarayanan S. Kaushik, Graeme C. McKinnon, Xucheng Zhu
  • Patent number: 11412948
    Abstract: Tracer kinetic models are utilized as temporal constraints for highly under-sampled reconstruction of DCE-MRI data. The method is flexible in handling any TK model, does not rely on tuning of regularization parameters, and in comparison to existing compressed sensing approaches, provides robust mapping of TK parameters at high under-sampling rates. In summary, the method greatly improves the robustness and ease-of-use while providing better quality of TK parameter maps than existing methods. In another embodiment, TK parameter maps are directly reconstructed from highly under-sampled DCE-MRI data. This method provides more accurate TK parameter values and higher under-sampling rates. It does not require tuning parameters and there are not additional intermediate steps. The proposed method greatly improves the robustness and ease-of-use while providing better quality of TK parameter maps than conventional indirect methods.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: August 16, 2022
    Assignee: University of Southern California
    Inventors: Krishna Shrinivas Nayak, Yi Guo, Robert Marc Lebel, Yinghua Zhu, Sajan Goud Lingala
  • Publication number: 20220248972
    Abstract: A method for producing an image of a subject with a magnetic resonance imaging (MRI) comprises acquiring a first set of partial k-space data from the subject and generating a phase corrected image based on a phase correction factor and the first set of the partial k-space data. The method further includes transforming the phase corrected image into a second set of partial k-space data and reconstructing the image of the subject from the second set of the partial k-space data and a weighting function.
    Type: Application
    Filed: February 10, 2021
    Publication date: August 11, 2022
    Inventors: Xinzeng Wang, Daniel V. Litwiller, Arnaud Guidon, Ersin Bayram, Robert Marc Lebel, Tim Sprenger
  • Publication number: 20220237748
    Abstract: Methods and systems are provided for independently removing streak artifacts and noise from medical images, using trained deep neural networks. In one embodiment, streak artifacts and noise may be selectively and independently removed from a medical image by receiving the medical image comprising streak artifacts and noise, mapping the medical image to a streak residual and a noise residual using the trained deep neural network, subtracting the streak residual from the medical image to a first extent, and subtracting the noise residual from the medical image to a second extent, to produce a de-noised medical image, and displaying the de-noised medical image via a display device.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Inventors: Xinzeng Wang, Daniel Vance Litwiller, Sagar Mandava, Robert Marc Lebel, Graeme Colin Mckinnon, Ersin Bayram
  • Publication number: 20220198725
    Abstract: A computer-implemented method of removing truncation artifacts in magnetic resonance (MR) images is provided. The method includes receiving a crude image that is based on partial k-space data from a partial k-space that is asymmetrically truncated in at least one k-space dimension. The method also includes analyzing the crude image using a neural network model trained with a pair of pristine images and corrupted images. The corrupted images are based on partial k-space data from partial k-spaces truncated in one or more partial sampling patterns. The pristine images are based on full k-space data corresponding to the partial k-space data of the corrupted images, and target output images of the neural network model are the pristine images. The method further includes deriving an improved image of the crude image based on the analysis, wherein the derived improved image includes reduced truncation artifacts and increased high spatial frequency data.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: Daniel Vance Litwiller, Robert Marc Lebel, Xinzeng Wang, Arnaud Guidon, Ersin Bayram
  • Patent number: 11346912
    Abstract: A computer-implemented method of correcting phase and reducing noise in magnetic resonance (MR) phase images is provided. The method includes executing a neural network model for analyzing MR images, wherein the neural network model is trained with a pair of pristine images and corrupted images, wherein the corrupted images include corrupted phase information, the pristine images are the corrupted images with the corrupted phase information reduced, and target output images of the neural network model are the pristine images. The method further includes receiving MR images including corrupted phase information, and analyzing the received MR images using the neural network model. The method also includes deriving pristine phase images of the received MR images based on the analysis, wherein the derived pristine phase images include reduced corrupted phase information, compared to the received MR images, and outputting MR images based on the derived pristine phase images.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: May 31, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Arnaud Guidon, Xinzeng Wang, Daniel Vance Litwiller, Tim Sprenger, Robert Marc Lebel, Ersin Bayram
  • Patent number: 11341616
    Abstract: Methods and systems are provided for independently removing streak artifacts and noise from medical images, using trained deep neural networks. In one embodiment, streak artifacts and noise may be selectively and independently removed from a medical image by receiving the medical image comprising streak artifacts and noise, mapping the medical image to a streak residual and a noise residual using the trained deep neural network, subtracting the streak residual from the medical image to a first extent, and subtracting the noise residual from the medical image to a second extent, to produce a de-noised medical image, and displaying the de-noised medical image via a display device.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: May 24, 2022
    Assignee: GE Precision Healthcare
    Inventors: Xinzeng Wang, Daniel Vance Litwiller, Sagar Mandava, Robert Marc Lebel, Graeme Colin McKinnon, Ersin Bayram
  • Publication number: 20220130084
    Abstract: Methods and systems are provided for processing medical images using deep neural networks. In one embodiment, a medical image processing method comprises receiving a first medical image having a first characteristic and one or more acquisition parameters corresponding to acquisition of the first medical image, incorporating the one or more acquisition parameters into a trained deep neural network, and mapping, by the trained deep neural network, the first medical image to a second medical image having a second characteristic. The deep neural network may thereby receive at least partial information regarding the type, extent, and/or spatial distribution of the first characteristic in a first medical image, enabling the trained deep neural network to selectively convert the received first medical image.
    Type: Application
    Filed: January 7, 2022
    Publication date: April 28, 2022
    Inventors: Daniel Vance Litwiller, Robert Marc Lebel
  • Patent number: 11257191
    Abstract: Methods and systems are provided for deblurring medical images using deep neural networks. In one embodiment, a method for deblurring a medical image comprises receiving a blurred medical image and one or more acquisition parameters corresponding to acquisition of the blurred medical image, incorporating the one or more acquisition parameters into a trained deep neural network, and mapping, by the trained deep neural network, the blurred medical image to a deblurred medical image. The deep neural network may thereby receive at least partial information regarding the type, extent, and/or spatial distribution of blurring in a blurred medical image, enabling the trained deep neural network to selectively deblur the received blurred medical image.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: February 22, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Daniel Vance Litwiller, Robert Marc Lebel
  • Publication number: 20220026516
    Abstract: A computer-implemented method of correcting phase and reducing noise in magnetic resonance (MR) phase images is provided. The method includes executing a neural network model for analyzing MR images, wherein the neural network model is trained with a pair of pristine images and corrupted images, wherein the corrupted images include corrupted phase information, the pristine images are the corrupted images with the corrupted phase information reduced, and target output images of the neural network model are the pristine images. The method further includes receiving MR images including corrupted phase information, and analyzing the received MR images using the neural network model. The method also includes deriving pristine phase images of the received MR images based on the analysis, wherein the derived pristine phase images include reduced corrupted phase information, compared to the received MR images, and outputting MR images based on the derived pristine phase images.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Inventors: Arnaud Guidon, Xinzeng Wang, Daniel Vance Litwiller, Tim Sprenger, Robert Marc Lebel, Ersin Bayram
  • Publication number: 20210295474
    Abstract: Methods and systems are provided for independently removing streak artifacts and noise from medical images, using trained deep neural networks. In one embodiment, streak artifacts and noise may be selectively and independently removed from a medical image by receiving the medical image comprising streak artifacts and noise, mapping the medical image to a streak residual and a noise residual using the trained deep neural network, subtracting the streak residual from the medical image to a first extent, and subtracting the noise residual from the medical image to a second extent, to produce a de-noised medical image, and displaying the de-noised medical image via a display device.
    Type: Application
    Filed: March 23, 2020
    Publication date: September 23, 2021
    Inventors: Xinzeng Wang, Daniel Vance Litwiller, Sagar Mandava, Robert Marc Lebel, Graeme Colin McKinnon, Ersin Bayram
  • Publication number: 20210272240
    Abstract: Methods and systems are provided for de-noising medical images using deep neural networks. In one embodiment, a method comprises receiving a medical image acquired by an imaging system, wherein the medical image comprises colored noise; mapping the medical image to a de-noised medical image using a trained convolutional neural network (CNN); and displaying the de-noised medical image via a display device. The deep neural network may thereby reduce colored noise in the acquired noisy medical image, increasing a clarity and diagnostic quality of the image.
    Type: Application
    Filed: March 2, 2020
    Publication date: September 2, 2021
    Inventors: Daniel Litwiller, Xinzeng Wang, Ali Ersoz, Robert Marc Lebel, Ersin Bayram, Graeme Colin McKinnon
  • Publication number: 20210049743
    Abstract: Methods and systems are provided for deblurring medical images using deep neural networks. In one embodiment, a method for deblurring a medical image comprises receiving a blurred medical image and one or more acquisition parameters corresponding to acquisition of the blurred medical image, incorporating the one or more acquisition parameters into a trained deep neural network, and mapping, by the trained deep neural network, the blurred medical image to a deblurred medical image. The deep neural network may thereby receive at least partial information regarding the type, extent, and/or spatial distribution of blurring in a blurred medical image, enabling the trained deep neural network to selectively deblur the received blurred medical image.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 18, 2021
    Inventors: Daniel Vance Litwiller, Robert Marc Lebel
  • Patent number: 10915990
    Abstract: Methods and systems are provided for selectively denoising medical images. In an exemplary method, one or more deep learning networks are trained to map corrupted images onto a first type and a second type of artifacts present in corresponding corrupted images. Then the one or more trained learning networks are used to single out the first and second types of artifacts from a particular medical image. The first type of artifacts is removed to a first extent and the second type of artifacts is removed to a second extent. The first and second extents may be different. For example, one type of artifacts can be fully suppressed while the other can be partially removed form the medical image.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: February 9, 2021
    Assignee: General Electric Company
    Inventor: Robert Marc Lebel
  • Patent number: 10746830
    Abstract: Methods and systems are provided for hybrid slice encoding. In one embodiment, a method for magnetic resonance imaging comprises, during a scan with a pulse sequence, sampling k-space linearly for a predetermined number of echoes, and sampling k-space centrically for remaining echoes of the pulse sequence. In this way, blurriness along the slice direction may be reduced for 3D fast spin echo imaging.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: August 18, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Gaohong Wu, Richard Scott Hinks, Robert Marc Lebel, Moran Wei
  • Patent number: 10635943
    Abstract: Methods and systems are provided for reducing noise in medical images with deep neural networks. In one embodiment, a method for training a neural network comprises transforming each of a plurality of initial image data sets not acquired by a medical imaging modality into a target image data set, wherein each target image data set is in a format specific to the medical imaging modality, corrupting each target image data set to generate a corrupted image data set, and training the neural network to map each corrupted image data set to the corresponding target image data set. In this way, the high-resolution of digital non-medical photographs or images can be leveraged for the enhancement or correction of medical images, and the trained neural network can be used to reduce noise and image artifacts in medical images acquired by the medical imaging modality.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: April 28, 2020
    Assignee: General Electric Company
    Inventors: Robert Marc Lebel, Dawei Gui, Graeme Colin McKinnon
  • Publication number: 20200126190
    Abstract: Methods and systems are provided for selectively denoising medical images. In an exemplary method, one or more deep learning networks are trained to map corrupted images onto a first type and a second type of artifacts present in corresponding corrupted images. Then the one or more trained learning networks are used to single out the first and second types of artifacts from a particular medical image. The first type of artifacts is removed to a first extent and the second type of artifacts is removed to a second extent. The first and second extents may be different. For example, one type of artifacts can be fully suppressed while the other can be partially removed form the medical image.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 23, 2020
    Inventor: Robert Marc Lebel
  • Publication number: 20200072929
    Abstract: Methods and systems are provided for hybrid slice encoding. In one embodiment, a method for magnetic resonance imaging comprises, during a scan with a pulse sequence, sampling k-space linearly for a predetermined number of echoes, and sampling k-space centrically for remaining echoes of the pulse sequence. In this way, blurriness along the slice direction may be reduced for 3D fast spin echo imaging.
    Type: Application
    Filed: August 28, 2018
    Publication date: March 5, 2020
    Inventors: Gaohong Wu, Richard Scott Hinks, Robert Marc Lebel, Moran Wei