Patents by Inventor Robert Martijn Van Hardeveld

Robert Martijn Van Hardeveld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9005538
    Abstract: The invention pertains to a reactor tube comprising a fixed bed of Fischer-Tropsch catalyst particles, wherein the catalyst particles in 5%-40% of the fixed bed volume at the upstream end have an average outer surface to volume ratio (S/V) of between 3.0 to 4.5 mm-1, and the remaining catalyst particles have an average S/V of between 4.5 to 8.0 mm-1, and wherein the difference between the average S/V of the particles at the upstream end and the remaining fixed bed volume is at least 0.5 mm-1. Additionally the fixed bed volume at the upstream end shows a full-bed apparent catalytic activity per volume unit lower than the full-bed apparent catalytic activity per volume unit in the remaining fixed bed volume and/or the weight of catalytically active metal per weight unit at the upstream end is more than 70% lower than in the remaining fixed bed volume.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: April 14, 2015
    Assignee: Shell Oil Company
    Inventors: Robert Martijn Van Hardeveld, Thomas Joris Remans, Erwin Roderick Stobbe
  • Publication number: 20130165537
    Abstract: The present invention pertains to a reactor tube comprising a fixed bed of Fischer-Tropsch catalyst particles, wherein the catalyst particles in 5% to 40% of the fixed bed volume at the upstream end have an average outer surface to volume ratio (S/V) of between 3.0 to 4.5 mm?1, and the catalyst particles in the remaining fixed bed volume have an average S/V of between 4.5 to 8.0 mm?1, and wherein the difference between the average S/V of the particles at the upstream end and the average S/V of the particles in the remaining fixed bed volume is at least 0.5 mm?1. The weight of catalytically active metal per volume unit in 5% to 33% of the fixed bed volume at the upstream end is 59% to 69% lower than the weight of catalytically active metal per volume unit in the remaining fixed bed volume.
    Type: Application
    Filed: June 27, 2012
    Publication date: June 27, 2013
    Applicant: SHELL OIL COMPANY
    Inventors: Robert Martijn VAN HARDEVELD, Thomas Joris REMANS, Erwin Roderick STOBBE
  • Publication number: 20130023594
    Abstract: The invention pertains to a reactor tube comprising a fixed bed of Fischer-Tropsch catalyst particles, wherein the catalyst particles in 5%-40% of the fixed bed volume at the upstream end have an average outer surface to volume ratio (S/V) of between 3.0 to 4.5 mm-1, and the remaining catalyst particles have an average S/V of between 4.5 to 8.0 mm-1, and wherein the difference between the average S/V of the particles at the upstream end and the remaining fixed bed volume is at least 0.5 mm-1. Additionally the fixed bed volume at the upstream end shows a full-bed apparent catalytic activity per volume unit lower than the full-bed apparent catalytic activity per volume unit in the remaining fixed bed volume and/or the weight of catalytically active metal per weight unit at the upstream end is more than 70% lower than in the remaining fixed bed volume.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 24, 2013
    Applicant: SHELL OIL COMPANY
    Inventors: Robert Martijn VAN HARDEVELD, Thomas Joris REMANS, Erwin Roderick STOBBE
  • Patent number: 7855236
    Abstract: Method to start a steady state process for producing normally gaseous, normally liquid and optionally normally solid hydrocarbons from synthesis gas, which process comprises the steps of: (i) providing the synthesis gas; and (ii) catalytically converting the synthesis gas at an elevated temperature and a steady state total reactor pressure to obtain the normally gaseous, normally liquid and optionally normally solid hydrocarbons; the method comprising admixing the synthesis gas of step (i) with one or more inert gases to form an admixture stream prior to catalytically converting the synthesis gas in step (ii) at the steady state total reactor pressure and wherein as the activity of the catalyst converting the synthesis gas proceeds towards a steady state, the amount of inert gas(es) in the admixture stream is reduced.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: December 21, 2010
    Assignee: Shell Oil Company
    Inventors: Robert Martijn Van Hardeveld, Hans Michiel Huisman, Lip Piang Kueh, Thomas Joris Remans
  • Patent number: 7855235
    Abstract: A method to start a steady state process for producing normally gaseous, liquid and solid hydrocarbons comprises providing a synthesis gas and catalytically converting the synthesis gas into normally gaseous, liquid or solid hydrocarbons. The process involves using at least a portion of the gaseous hydrocarbons produced as a recycle stream to which hydrogen is added prior to its reintroduction into the reactors and as the activity of the catalyst converting the synthesis gas proceeds from start-up towards a steady state, the amount of recycle stream is reduced.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: December 21, 2010
    Assignee: Shell Oil Company
    Inventor: Robert Martijn Van Hardeveld
  • Patent number: 7846325
    Abstract: The invention provides a process for the removal of COS and H2S from a synthesis gas stream comprising COS and H2S, the process having the steps of: removing H2S from a feed synthesis gas stream with a first solid adsorbent to obtain a first synthesis gas stream, converting COS in the first synthesis gas stream to H2S by contacting the first synthesis gas stream with a COS-hydrolysing catalyst in the presence of water in a hydrolysis zone to obtain a second synthesis gas stream depleted of COS and enriched in H2S; and removing H2S from the second synthesis gas stream by contacting the second synthesis gas stream with a second solid adsorbent in a H2S removal zone to obtain a third synthesis gas stream depleted of H2S and depleted of COS to very low levels.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: December 7, 2010
    Assignee: Shell Oil Company
    Inventors: Robert Martijn Van Hardeveld, Rudolf Henri Max Herold, Adriaan Johannes Kodde, Thijme Last, Cornelis Jacobus Smit
  • Patent number: 7798221
    Abstract: An oil shale formation may be treated using an in situ thermal process. Heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature. Heat input into the formation may be controlled to raise the temperature of portion at a selected rate during pyrolysis of hydrocarbons within the formation. A mixture of hydrocarbons, H2, and/or other formation fluids may be produced from the formation. The mixture may be separated into condensable hydrocarbons and non-condensable hydrocarbons. The condensable hydrocarbons removed from the formation may be a high quality oil that has a relatively low olefin content and a relatively high API gravity.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: September 21, 2010
    Assignee: Shell Oil Company
    Inventors: Harold J. Vinegar, Scott Lee Wellington, Eric Pierre de Rouffignac, John Michael Karanikas, Ilya Emil Berchenko, George Leo Stegemeier, Kevin Albert Maher, Etuan Zhang, Gordon Thomas Shahin, James Louis Menotti, John Matthew Coles, Thomas David Fowler, Charles Robert Keedy, Ajay Madhav Madgavkar, Robert Martijn Van Hardeveld, Robert Charles Ryan, Lanny Gene Schoeling, Frederick Gordon Carl
  • Patent number: 7795318
    Abstract: A multi-stage process for the production of hydrocarbon products from syngas, each stage of the process comprising one or more syngas conversion reactors in which syngas is partially converted into hydrocarbon products at conversion conditions, each conversion reactor having a syngas entry stream system which system combines two or more entry streams of syngas and which system delivers the combined syngas to the syngas conversion reactor, the syngas entry system combining at least one entry stream of syngas being a syngas stream obtained in a partial oxidation process (for the first stage) or an exit stream of syngas from the previous stage, together with a reformed syngas (for all stages except the first stage), with another syngas stream being a recycle stream from the conversion reactor and a syngas exit stream system which discharges an exit stream of syngas from the reactor, the exit stream partly being used as the recycle stream to the syngas entry system as mentioned above, and, in the case that there
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: September 14, 2010
    Assignee: Shell Oil Company
    Inventor: Robert Martijn Van Hardeveld
  • Patent number: 7790648
    Abstract: The invention relates to a process for preparing a catalyst. The process allows the delamination of layered crystals which are used as a starting material for a catalyst. The starting material is subsequently converted into an active portion of a catalyst with an increased dispersion resulting in a higher activity. Preferred delaminating agents are di-carboxylic acids and one particular example is citric acid. Preferably at least 0.75 wt %, more preferably at least 1.5 wt % of a delaminating agent is added to the catalyst starting material.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: September 7, 2010
    Assignee: Shell Oil Company
    Inventors: Ronald Jan Dogterom, Robert Martijn Van Hardeveld, Marinus Johannes Reynhout, Bastiaan Anton Van De Werff
  • Patent number: 7674940
    Abstract: A process for the preparation of detergents containing a relatively low amount of isoparaffins, involving separating a hydrocarbonaceous product stream from a Fischer-Tropsch process using a cobalt based catalyst and producing normally liquid and normally solid hydrocarbons into a light fraction boiling below an intermediate fraction having detergent hydrocarbons, an intermediate boiling fraction having detergent hydrocarbons and a heavy fraction boiling above the intermediate boiling fraction having detergent hydrocarbons, followed by conversion of the detergent hydrocarbons present in the intermediate boiling fraction into detergents, the Fischer-Tropsch process being carried out at a relatively high pressure.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: March 9, 2010
    Assignee: Shell Oil Company
    Inventors: Henk Dirkzwager, Robert Martijn Van Hardeveld, Arend Hoek, Peter William Lednor, Joannes Ignatius Geijsel
  • Publication number: 20090234031
    Abstract: A multi-stage process for the production of hydrocarbon products from syngas, each stage of the process comprising one or more syngas conversion reactors in which syngas is partially converted into hydrocarbon products at conversion conditions, each conversion reactor having a syngas entry stream system which system combines two or more entry streams of syngas and which system delivers the combined syngas to the syngas conversion reactor, the syngas entry system combining at least one entry stream of syngas being a syngas stream obtained in a partial oxidation process (for the first stage) or an exit stream of syngas from the previous stage, together with a reformed syngas (for all stages except the first stage), with another syngas stream being a recycle stream from the conversion reactor and a syngas exit stream system which discharges an exit stream of syngas from the reactor, the exit stream partly being used as the recycle stream to the syngas entry system as mentioned above, and, in the case that there
    Type: Application
    Filed: July 14, 2006
    Publication date: September 17, 2009
    Inventor: Robert Martijn Van Hardeveld
  • Publication number: 20090101346
    Abstract: An oil shale formation may be treated using an in situ thermal process. Heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature. Heat input into the formation may be controlled to raise the temperature of portion at a selected rate during pyrolysis of hydrocarbons within the formation. A mixture of hydrocarbons, H2, and/or other formation fluids may be produced from the formation. The mixture may be separated into condensable hydrocarbons and non-condensable hydrocarbons. The condensable hydrocarbons removed from the formation may be a high quality oil that has a relatively low olefin content and a relatively high API gravity.
    Type: Application
    Filed: May 31, 2007
    Publication date: April 23, 2009
    Inventors: Harold J. Vinegar, Scott Lee Wellington, Eric Pierre de Rouffignac, John Michael Karanikas, IIya Emil Berchenko, George Leo Stegemeier, Kevin Albert Maher, Etuan Zhang, Gordon Thomas Shahin, James Louis Menotti, John Matthew Coles, Thomas David Fowler, Charles Robert Keedy, Ajay Madhav Madgavkar, Robert Martijn Van Hardeveld, Robert Charles Ryan, Lanny Gene Schoeling, Frederick Gordon Carl
  • Publication number: 20080306171
    Abstract: Method to start a steady state process for producing normally gaseous, normally liquid and optionally normally solid hydrocarbons from synthesis gas, which process comprises the steps of: (i) providing the synthesis gas; (ii) catalytically converting the synthesis gas in one or more conversion reactors at an elevated temperature and a pressure to obtain the normally gaseous, normally liquid and optionally normally solid hydrocarbons; and (iii) using at least a portion of the gaseous hydrocarbons produced by step (ii) as a recycle stream to be reintroduced into conversion reactor(s) of step (ii); the method comprising admixing a hydrogen stream with the recycle stream of step (iii) prior to its reintroduction into conversion reactor(s) of step (ii), wherein as the activity of the catalyst converting the synthesis gas proceeds towards a steady state, the amount of recycle stream is reduced.
    Type: Application
    Filed: December 6, 2006
    Publication date: December 11, 2008
    Inventor: Robert Martijn Van Hardeveld
  • Publication number: 20080275144
    Abstract: Method to start a steady state process for producing normally gaseous, normally liquid and optionally normally solid hydrocarbons from synthesis gas, which process comprises the steps of: (i) providing the synthesis gas; and (ii) catalytically converting the synthesis gas at an elevated temperature and a steady state total reactor pressure to obtain the normally gaseous, normally liquid and optionally normally solid hydrocarbons; the method comprising admixing the synthesis gas of step (i) with one or more inert gases to form an admixture stream prior to catalytically converting the synthesis gas in step (ii) at the steady state total reactor pressure and wherein as the activity of the catalyst converting the synthesis gas proceeds towards a steady state, the amount of inert gas(es) in the admixture stream is reduced.
    Type: Application
    Filed: December 6, 2006
    Publication date: November 6, 2008
    Inventors: Robert Martijn Van Hardeveld, Hans Michiel Huisman, Lip Piang Kueh, Thomas Joris Remans
  • Publication number: 20080242749
    Abstract: The invention provides a process for the removal of COS from a first synthesis gas stream comprising COS and H2S, the process having the steps of: (a) converting COS in the first synthesis gas stream to H2S by contacting the first synthesis gas stream with a COS-hydrolysing catalyst in the presence of water in a hydrolysis zone to obtain a second synthesis gas stream depleted of COS and enriched in H2S; (b) removing H2S from the second synthesis gas stream by contacting the second synthesis gas stream with a solid adsorbent in a H2S removal zone to obtain a third synthesis gas stream depleted of H2S and depleted of COS
    Type: Application
    Filed: July 22, 2005
    Publication date: October 2, 2008
    Applicants: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.
    Inventors: Robert Martijn Van Hardeveld, Rudolf Henri Max Herold, Adriaan Johannes Kodde, Thijme Last, Cornelis Jacobus Smit
  • Publication number: 20080114084
    Abstract: This invention relates to a process for preparing a catalyst. The process allows the delamination of layered crystals which are used as a starting material for a catalyst. The starting material is subsequently converted into an active portion of a catalyst with an increased dispersion resulting in a higher activity. Preferred delaminating agents are di-carboxylic acids and one particular example is citric acid. Preferably at least 0.75 wt %, more preferably at least 1.5 wt % of a delaminating agent is added to the catalyst starting material.
    Type: Application
    Filed: December 21, 2005
    Publication date: May 15, 2008
    Applicant: SHELL OIL COMPANY
    Inventors: Ronald Jan Dogterom, Robert Martijn Van Hardeveld, Marinus Johannes Reynhout, Bastiaan Anton Van De Werff
  • Patent number: 7114566
    Abstract: An in situ process for treating a hydrocarbon containing formation is provided. The process may include providing heat from one or more heat sources to at least a portion of the formation. Heat sources may include a natural distributed combustor. The natural distributed combustor may include an oxidizing fluid source to provide oxidizing fluids to a reaction zone in the formation to generate heat within the reaction zone. The heat may be allowed, in some embodiments, to transfer from the reaction zone to a selected section of the formation such that heat from one or more heat sources pyrolyzes at least some hydrocarbons within the selected section. Hydrocarbons may be produced from the formation.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: October 3, 2006
    Assignee: Shell Oil Company
    Inventors: Harold J. Vinegar, Eric Pierre de Rouffignac, Scott Lee Wellington, Robert Martijn Van Hardeveld
  • Patent number: 7087191
    Abstract: A process for preparing a shell metal catalyst or a precursor of a shell metal catalyst which process includes the steps of: applying a slurry having a diluent; a catalytically active metal or a precursor compound thereof; and optionally a refractory oxide; designated hereinafter as “first refractory oxide” of an element having an atomic number of at least 20 or a precursor of the first refractory oxide; onto the surface of particles of a core carrier; forming a wet coating; and removing at least a part of the diluent from the wet coating; wherein the slurry has at least 5% w of the catalytically active metal or the precursor compound thereof; calculated on the weight of the metal relative to the weight of calcinations residue which can be formed from the slurry by drying the slurry and calcining. The invention also relates to a shell metal catalyst or a precursor of a shell metal catalyst which is obtainable by the process; and the use of the shell metal catalyst in a chemical conversion process.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: August 8, 2006
    Assignee: Shell Oil Company
    Inventors: Robert Martijn Van Hardeveld, Carolus Matthias Anna Maria Mesters, Gerardus Petrus Lambertus Niesen
  • Patent number: 7017661
    Abstract: A coal formation may be treated using an in situ thermal process. A mixture of hydrocarbons, H2, and/or other formation fluids may be produced from the formation. Heat may be applied to the formation to raise a temperature of a portion of the formation to a synthesis gas production temperature. A synthesis gas producing fluid may be introduced into the formation to generate synthesis gas. Synthesis gas may be produced from the formation in a batch manner or in a substantially continuous manner.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: March 28, 2006
    Assignee: Shell Oil Company
    Inventors: Harold J. Vinegar, Scott Lee Wellington, Eric Pierre de Rouffignac, John Michael Karanikas, Ilya Emil Berchenko, George Leo Stegemeier, Kevin Albert Maher, Etuan Zhang, Thomas David Fowler, Robert Charles Ryan, Robert Martijn Van Hardeveld
  • Patent number: 7013972
    Abstract: An oil shale formation may be treated using an in situ thermal process. A mixture of hydrocarbons, H2, and/or other formation fluids may be produced from the formation. Heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature. Heat may be supplied to the formation by reacting an oxidant with hydrocarbons adjacent to wellbores to generate heat. Generated heat may be transferred to the portion substantially by conduction to pyrolyze at least a portion of hydrocarbon material within the portion.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: March 21, 2006
    Assignee: Shell Oil Company
    Inventors: Harold J. Vinegar, John Matthew Coles, Eric Pierre de Rouffignac, John Michael Karanikas, James Louis Menotti, Robert Martijn Van Hardeveld, Scott Lee Wellington