Patents by Inventor Robert Mayell

Robert Mayell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10819102
    Abstract: An electronic circuit for sensing a temperature rise in a power transistor device, the temperature rise caused by a current flow in the power transistor device. The power transistor device and a sense-FET are disposed on a substrate. The sense-FET senses a fractional portion of the current flow and outputs a current signal. A JFET has its drain connected to the drain of the power transistor device. The gate of the JFET is connected to the source of the power transistor device, such that when the power transistor device is on, the JFET is also turned on, and a drain voltage signal of the power transistor device is output at a second node of the JFET. A detection circuit receives the drain voltage signal and the current signal and outputs an alarm signal when the drain-source resistance of the power transistor device exceeds a combined threshold limit.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: October 27, 2020
    Assignee: Power Integrations, Inc.
    Inventor: Robert Mayell
  • Publication number: 20180175610
    Abstract: An electronic circuit for sensing a temperature rise in a power transistor device, the temperature rise caused by a current flow in the power transistor device. The power transistor device and a sense-FET are disposed on a substrate. The sense-FET senses a fractional portion of the current flow and outputs a current signal. A JFET has its drain connected to the drain of the power transistor device. The gate of the JFET is connected to the source of the power transistor device, such that when the power transistor device is on, the JFET is also turned on, and a drain voltage signal of the power transistor device is output at a second node of the JFET. A detection circuit receives the drain voltage signal and the current signal and outputs an alarm signal when the drain-source resistance of the power transistor device exceeds a combined threshold limit.
    Type: Application
    Filed: January 5, 2018
    Publication date: June 21, 2018
    Inventor: Robert Mayell
  • Patent number: 9983239
    Abstract: An integrated circuit (IC) for sensing a current flowing through a transistor device includes a substrate and a current scaling circuit that includes first and second MOSFET devices. The first MOSFET device has a drain coupled to the switched FET at a first node and a source coupled to the substrate. The second MOSFET device has a source coupled to the substrate and a drain coupled to a second node. The first MOSFET device has a channel size that is K times larger than the second MOSFET device. Circuitry is included that equalizes a voltage across both the first MOSFET device and the second MOSFET device.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: May 29, 2018
    Assignee: Power Integrations, Inc.
    Inventor: Robert Mayell
  • Publication number: 20170328934
    Abstract: An integrated circuit (IC) for sensing a current flowing through a transistor device includes a substrate and a current scaling circuit that includes first and second MOSFET devices. The first MOSFET device has a drain coupled to the switched FET at a first node and a source coupled to the substrate. The second MOSFET device has a source coupled to the substrate and a drain coupled to a second node. The first MOSFET device has a channel size that is K times larger than the second MOSFET device. Circuitry is included that equalizes a voltage across both the first MOSFET device and the second MOSFET device.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 16, 2017
    Inventor: Robert Mayell
  • Patent number: 9036369
    Abstract: Methods and apparatuses for programming a parameter value in an IC (e.g., any power electronic device, such as a controller of a power converter) are disclosed. The parameter can be selected/programmed by selecting a clamp using an external optional (selectively inserted) diode coupled to a multi-function programming terminal. In particular, a controller IC for a power converter can be externally programmed via one or more multiple function terminals during startup of the converter to select between two or more options using the external programming terminal(s). Once programming is complete, internal programming circuitry may be decoupled from the programming terminal and during normal operation the programming terminal may then be used for another function, such as a bypass (BP) terminal to provide a supply voltage to the IC or other required functionalities.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 19, 2015
    Assignee: Power Integrations, Inc.
    Inventors: Robert Mayell, Yury Gaknoki, Mingming Mao
  • Publication number: 20140104887
    Abstract: Methods and apparatuses for programming a parameter value in an IC (e.g., any power electronic device, such as a controller of a power converter) are disclosed. The parameter can be selected/programmed by selecting a clamp using an external optional (selectively inserted) diode coupled to a multi-function programming terminal. In particular, a controller IC for a power converter can be externally programmed via one or more multiple function terminals during startup of the converter to select between two or more options using the external programming terminal(s). Once programming is complete, internal programming circuitry may be decoupled from the programming terminal and during normal operation the programming terminal may then be used for another function, such as a bypass (BP) terminal to provide a supply voltage to the IC or other required functionalities.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: Power Integrations, Inc.
    Inventors: Robert MAYELL, Yury GAKNOKI, Mingming MAO
  • Publication number: 20130155733
    Abstract: Methods and apparatuses are disclosed for monitoring an ac input for fault conditions. The ac input may be monitored by a latch-reset that uses the ac input to charge a line detection capacitor. The latch-reset may be configured such that the voltage at one end of the line detection capacitor drops below a line detection threshold voltage when the ac input is removed for longer than an allowable period of time or if the voltage of the ac input falls below an acceptable value. The drop in voltage at the end of the capacitor may cause an electrically coupled transistor to switch, thereby causing a reset-signal to be generated.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: Power Integrations, Inc.
    Inventor: Robert Mayell
  • Publication number: 20080290910
    Abstract: A current sink circuit is disclosed. An apparatus according to aspects of the present invention includes a sensing element, a pass element coupled to the sensing element and a setting element coupled to the pass element. The setting element provides both a voltage threshold level and a current regulation reference. The pass element is to pass current conducted through the current sink circuit in response to the setting element. The current conducted through the current sink circuit is substantially zero when a voltage applied across the current sink circuit is below the voltage threshold level. A signal generated by the sensing element is regulated in response to the current regulation reference by regulating a current conducted through the pass element when a voltage applied across the current sink circuit is above the voltage threshold level.
    Type: Application
    Filed: August 7, 2008
    Publication date: November 27, 2008
    Applicant: POWER INTEGRATIONS, INC.
    Inventor: Robert Mayell
  • Patent number: 7443153
    Abstract: A current sink circuit is disclosed. An apparatus according to aspects of the present invention includes a sensing element, a pass element coupled to the sensing element and a setting element coupled to the pass element. The setting element provides both a voltage threshold level and a current regulation reference. The pass element is to pass current conducted through the current sink circuit in response to the setting element. The current conducted through the current sink circuit is substantially zero when a voltage applied across the current sink circuit is below the voltage threshold level. A signal generated by the sensing element is regulated in response to the current regulation reference by regulating a current conducted through the pass element when a voltage applied across the current sink circuit is above the voltage threshold level.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: October 28, 2008
    Assignee: Power Integrations, Inc.
    Inventor: Robert Mayell
  • Publication number: 20070236848
    Abstract: An in-rush current limiting circuit is disclosed. An apparatus according to aspects of the present invention includes a power switch having a first, second and third terminals. A capacitor having a first terminal and a second terminal is also included. The second terminal of the capacitor is coupled to the first terminal of a current source. The second terminal of the current source is coupled to a second input terminal of the in-rush current limit circuit. A power switch is also included. The first terminal of the power switch is coupled to the anode of a diode. The cathode of the diode is connected to the first terminal of the current source. The second terminal of the power switch is coupled to a second input terminal of the in-rush current limit circuit. The third terminal of the power switch is coupled to be responsive to a voltage across the current source circuit in response to a rate of change of voltage between first and second terminals of the power switch.
    Type: Application
    Filed: March 30, 2006
    Publication date: October 11, 2007
    Inventor: Robert Mayell
  • Publication number: 20070229053
    Abstract: A current sink circuit is disclosed. An apparatus according to aspects of the present invention includes a sensing element, a pass element coupled to the sensing element and a setting element coupled to the pass element. The setting element provides both a voltage threshold level and a current regulation reference. The pass element is to pass current conducted through the current sink circuit in response to the setting element. The current conducted through the current sink circuit is substantially zero when a voltage applied across the current sink circuit is below the voltage threshold level. A signal generated by the sensing element is regulated in response to the current regulation reference by regulating a current conducted through the pass element when a voltage applied across the current sink circuit is above the voltage threshold level.
    Type: Application
    Filed: March 29, 2006
    Publication date: October 4, 2007
    Inventor: Robert Mayell
  • Publication number: 20070057656
    Abstract: Techniques are disclosed to regulate a power supply with a compensation signal generation circuit. One example regulated power supply includes a sense circuit coupled to sense an output voltage of the regulated power supply. The regulated power supply also includes a switching power converter circuit, which includes a switch coupled to be switched in response to a control signal received from the sense circuit to regulate the output voltage of the regulated power supply. The regulated power supply also includes a compensation signal generation circuit coupled to receive a switching signal representative of a switching of the switch in the switching power converter circuit. The compensation signal generation circuit is to generate a compensation signal responsive to the switching signal. The compensation signal is to be received by the sense circuit to modify the control signal.
    Type: Application
    Filed: September 15, 2005
    Publication date: March 15, 2007
    Inventors: Robert Mayell, Chan Park