Patents by Inventor Robert MELTZER
Robert MELTZER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250250624Abstract: Emulsion compositions are provided herein. Also provided herein are kits containing one or more emulsion compositions or components for making such emulsion compositions. Also provided herein are methods of using such emulsion compositions, such as for amplification of target nucleic acids in emulsion droplets.Type: ApplicationFiled: March 31, 2025Publication date: August 7, 2025Inventors: Yi XUE, Joshua RITCHEY, Robert MELTZER
-
Publication number: 20250188446Abstract: The disclosure provides methods for creating long oligonucleotide reagents that include barcodes and other element for sequencing library preparation, where the oligonucleotides are created by multiple tiers of ligation of shorter oligos. The disclosed methods work to extend short oligos that are attached to particles, thereby allowing one to create particles that carry large number of long sample preparation oligonucleotides without being required to synthesize those full-length molecules with a polymerase.Type: ApplicationFiled: January 27, 2025Publication date: June 12, 2025Applicant: Illumina, Inc.Inventors: Robert Meltzer, Kristina Fontanez, Yi Xue
-
Patent number: 12275989Abstract: Emulsion compositions are provided herein. Also provided herein are kits containing one or more emulsion compositions or components for making such emulsion compositions. Also provided herein are methods of using such emulsion compositions, such as for amplification of target nucleic acids in emulsion droplets.Type: GrantFiled: November 3, 2023Date of Patent: April 15, 2025Assignee: Bio-Rad Laboratories, Inc.Inventors: Yi Xue, Joshua Ritchey, Robert Meltzer
-
Patent number: 12241059Abstract: The disclosure provides methods for creating long oligonucleotide reagents that include barcodes and other element for sequencing library preparation, where the oligonucleotides are created by multiple tiers of ligation of shorter oligos. The disclosed methods work to extend short oligos that are attached to particles, thereby allowing one to create particles that carry large number of long sample preparation oligonucleotides without being required to synthesize those full-length molecules with a polymerase.Type: GrantFiled: July 15, 2021Date of Patent: March 4, 2025Assignee: Illumina, Inc.Inventors: Robert Meltzer, Kristina Fontanez, Yi Xue
-
Publication number: 20250046395Abstract: The invention provides methods for measuring quantities of mRNA transcripts present in a sample, where sequence information for each molecule is read from what is essentially a random start site within that molecule and in which a short binning index (e.g., about 3 bases) is added to the sequence information. The binning index is useful to resolve any bias arising with the use of the intrinsic sequences to uniquely identify and count the molecules.Type: ApplicationFiled: June 14, 2024Publication date: February 6, 2025Inventors: Yigal Agam, Yi Xue, Kristina Fontanez, Robert Meltzer
-
Publication number: 20240279648Abstract: The invention provides systems and methods for making sequencing libraries that are useful for quantitatively analyzing nucleic acids in a sample. Sample nucleic acids are randomly cleaved at, and PCR handled are attached to, a random cut site. The nucleic acid is amplified into a sequencing library in which a sequencing primer generates a sequence read from adjacent the random cut site. The sequence reads can be mapped to a reference, but they will also include a unique identifier sequence that comes from within the nucleic acid molecule being analyzed, i.e., an intrinsic molecular identifier (IMI). The IMI is unique for each molecule and can thus be used to deduplicate sequence reads originating from the same molecule.Type: ApplicationFiled: May 1, 2024Publication date: August 22, 2024Inventor: Robert Meltzer
-
Patent number: 11976325Abstract: The invention provides systems and methods for making sequencing libraries that are useful for quantitatively analyzing nucleic acids in a sample. Sample nucleic acids are randomly cleaved at, and PCR handled are attached to, a random cut site. The nucleic acid is amplified into a sequencing library in which a sequencing primer generates a sequence read from adjacent the random cut site. The sequence reads can be mapped to a reference, but they will also include a unique identifier sequence that comes from within the nucleic acid molecule being analyzed, i.e., an intrinsic molecular identifier (IMI). The IMI is unique for each molecule and can thus be used to deduplicate sequence reads originating from the same molecule.Type: GrantFiled: April 6, 2023Date of Patent: May 7, 2024Assignee: FLUENT BIOSCIENCES INC.Inventor: Robert Meltzer
-
Publication number: 20240117423Abstract: The invention provides systems and methods for making sequencing libraries that are useful for quantitatively analyzing nucleic acids in a sample. Sample nucleic acids are randomly cleaved at, and PCR handled are attached to, a random cut site. The nucleic acid is amplified into a sequencing library in which a sequencing primer generates a sequence read from adjacent the random cut site. The sequence reads can be mapped to a reference, but they will also include a unique identifier sequence that comes from within the nucleic acid molecule being analyzed, i.e., an intrinsic molecular identifier (IMI). The IMI is unique for each molecule and can thus be used to deduplicate sequence reads originating from the same molecule.Type: ApplicationFiled: April 6, 2023Publication date: April 11, 2024Applicant: FLUENT BIOSCIENCES INC.Inventor: Robert Meltzer
-
Publication number: 20240076726Abstract: Emulsion compositions are provided herein. Also provided herein are kits containing one or more emulsion compositions or components for making such emulsion compositions. Also provided herein are methods of using such emulsion compositions, such as for amplification of target nucleic acids in emulsion droplets.Type: ApplicationFiled: November 3, 2023Publication date: March 7, 2024Inventors: Yi XUE, Joshua RITCHEY, Robert MELTZER
-
Publication number: 20240043940Abstract: The disclosure provides methods and systems of analyzing single cells by simultaneously separating cells into monodisperse droplets and tagging each nucleic acid molecule from the cells with barcodes unique to each droplet. The methods and systems combine template particles with a plurality of single cells in a tube, generate in the tube monodispersed droplets encapsulating a single one of the template particles and a single one of the single cells, release nucleic acid molecules from the single cells and provide each nucleic acid molecule with a barcode unique to the respective droplet. The nucleic acid molecules can then be analyzed by any known method, for example by sequencing the nucleic acid molecules.Type: ApplicationFiled: September 5, 2023Publication date: February 8, 2024Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani
-
Publication number: 20240024870Abstract: Compositions, devices, and methods are disclosed for the modification of polymer surfaces with coatings having a dispersion of silicone polymer and hydrophobic silica. The surface coatings provide the polymer surface with high hydrophobicity, as well as increased resistance to biofouling with proteinaceous material. The polymer surfaces can be particularly useful in microfluidic devices and methods that involve the contacting of the covalently modified polymer surfaces with emulsions of aqueous droplets containing biological macromolecules within an oil carrier phase.Type: ApplicationFiled: August 2, 2023Publication date: January 25, 2024Inventors: Joshua RITCHEY, Yi XUE, Robert MELTZER
-
Patent number: 11857968Abstract: Microfluidic methods of altering the spacing of a stream of objects. In an exemplary method, objects of the object stream may be transported in carrier fluid along a microfluidic channel structure having an inflow region, an outflow region, and an expanded region extending from the inflow region to the outflow region. The expanded region may have a greater cross-sectional area for fluid flow than each of the inflow region and the outflow region. Objects of the object stream may be moved from the inflow region to the expanded region such that at least a subset of such objects are moved closer to one another. Objects of the object stream may be passed from the expanded region to the outflow region to increase a distance between such objects.Type: GrantFiled: June 24, 2021Date of Patent: January 2, 2024Assignee: Bio-Rad Laboratories, Inc.Inventors: Lung-Hsin Hung, Robert Meltzer, Lucas Frenz
-
Patent number: 11845980Abstract: Emulsion compositions are provided herein. Also provided herein are kits containing one or more emulsion compositions or components for making such emulsion compositions. Also provided herein are methods of using such emulsion compositions, such as for amplification of target nucleic acids in emulsion droplets.Type: GrantFiled: February 4, 2022Date of Patent: December 19, 2023Assignee: Bio-Rad Laboratories, Inc.Inventors: Yi Xue, Joshua Ritchey, Robert Meltzer
-
Patent number: 11827936Abstract: This disclosure provides methods and systems for single-cell analysis, including single-cell transcriptome analysis, of target cells without microfluidic devices. The disclosed methods involve the use of template particles to template the formation of monodisperse droplets to generally capture a single target cell from a population of cells in an encapsulation, derive a plurality of distinct mRNA molecules from the single target cell, and quantify the distinct mRNA molecules to generate an expression profile.Type: GrantFiled: January 12, 2021Date of Patent: November 28, 2023Assignee: Fluent Biosciences Inc.Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Christopher D'amato, Sepehr Kiani
-
Patent number: 11773452Abstract: The disclosure provides methods and systems of analyzing single cells by simultaneously separating cells into monodisperse droplets and tagging each nucleic acid molecule from the cells with barcodes unique to each droplet. The methods and systems combine template particles with a plurality of single cells in a tube, generate in the tube monodispersed droplets encapsulating a single one of the template particles and a single one of the single cells, release nucleic acid molecules from the single cells and provide each nucleic acid molecule with a barcode unique to the respective droplet. The nucleic acid molecules can then be analyzed by any known method, for example by sequencing the nucleic acid molecules.Type: GrantFiled: August 20, 2021Date of Patent: October 3, 2023Assignee: Fluent Biosciences Inc.Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani
-
Patent number: 11759780Abstract: Compositions, devices, and methods are disclosed for the modification of polymer surfaces with coatings having a dispersion of silicone polymer and hydrophobic silica. The surface coatings provide the polymer surface with high hydrophobicity, as well as increased resistance to biofouling with proteinaceous material. The polymer surfaces can be particularly useful in microfluidic devices and methods that involve the contacting of the covalently modified polymer surfaces with emulsions of aqueous droplets containing biological macromolecules within an oil carrier phase.Type: GrantFiled: January 20, 2021Date of Patent: September 19, 2023Assignee: Bio-Rad Laboratories, Inc.Inventors: Joshua Ritchey, Yi Xue, Robert Meltzer
-
Publication number: 20230141825Abstract: The invention provides methods and systems for drug screening by segregating single cells into droplets simultaneously and providing candidate compound to the single cells to measure cellular response. Methods of the present invention combine template particles with a plurality of single cells in a tube, generate in the tube monodispersed droplets simultaneously that encapsulate a single one of the template particles and single one of the single cells, provide to the single cells one or more candidate compounds, and measure a cellular response to the one or more candidate compounds.Type: ApplicationFiled: November 11, 2022Publication date: May 11, 2023Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani
-
Publication number: 20230019117Abstract: This disclosure provides a decentralized workflow for analyzing single cell gene expression. The workflow makes use of pre-templated instant partitions to segregate cells into separate compartments to individually capture and barcode RNA from single cells in a massively parallel single tube format. The workflow includes steps for processing the RNA from the single cells for sequencing. Separate portions of the decentralized workflow are performed by a research lab and a core facility, allowing increased flexibility in time and location of protocol steps.Type: ApplicationFiled: July 14, 2022Publication date: January 19, 2023Inventors: Sepehr Kiani, Ram Santhanam, Robert Meltzer, Kristina Fontanez
-
Publication number: 20230018158Abstract: This disclosure provides a powerful screening platform that combines pre-templated instant partitions with DNA-encoded library (DEL) technologies to identify target small molecule interactions and analyze their intracellular effects in single cell resolution using methods that require minimal sample preparation and affordable sequencing costs.Type: ApplicationFiled: July 14, 2022Publication date: January 19, 2023Inventors: Catherine Kugler, Robert Meltzer
-
Publication number: 20230002807Abstract: This invention provides ultra-sensitive methods and compositions for detecting patient-specific mutations from cell free nucleic acids (cfDNA) without sequencing. Methods of the invention make use of fluidic partitions for multiplex amplification of cfDNA and thereby create a library of uniformly amplified amplicons. The uniformly amplified amplicons can be split into any number of different detection reactions (while maintaining detection sensitivity) for single-plex detection of mutations present in cfDNA. These methods provide substantially improved signal to noise ratio and easier discrimination of low-abundance mutations.Type: ApplicationFiled: June 29, 2022Publication date: January 5, 2023Inventors: Tony Godfrey, Catherine Kugler, Robert Meltzer