Patents by Inventor Robert Mergen

Robert Mergen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9162423
    Abstract: The invention relates to a multilayered bearing shell (2) comprising a back metal layer (3) as a carrier element for the layer structure and at least one further bearing layer joined to the back metal layer (3), wherein the back metal layer (3) is made from a bronze. The back metal layer (3) contains in addition to copper, which forms the matrix of the bronze, tin in a proportion selected from a range with a lower limit of 1.25 wt. % and an upper limit of 12 wt. %, zinc in a proportion selected from a range with a lower limit of 0.25 wt. % and an upper limit of 6 wt. % and phosphorus in a proportion selected from a range with a lower limit of 0.01 wt. % and an upper limit of 0.5 wt. %.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: October 20, 2015
    Assignees: Miba Gleitlager GmbH, MTU Friedrichshafen GmbH
    Inventors: Reiner Boeschen, Robert Mergen, Falko Langbein, Ulrich Schmid
  • Publication number: 20120321909
    Abstract: The invention relates to a multilayered bearing shell (2) comprising a back metal layer (3) as a carrier element for the layer structure and at least one further bearing layer joined to the back metal layer (3), wherein the back metal layer (3) is made from a bronze. The back metal layer (3) contains in addition to copper, which forms the matrix of the bronze, tin in a proportion selected from a range with a lower limit of 1.25 wt. % and an upper limit of 12 wt. %, zinc in a proportion selected from a range with a lower limit of 0.25 wt. % and an upper limit of 6 wt. % and phosphorus in a proportion selected from a range with a lower limit of 0.01 wt. % and an upper limit of 0.5 wt. %.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Applicants: MTU FRIEDRICHSHAFEN GMBH, MIBA GLEITLAGER GMBH
    Inventors: Reiner BOESCHEN, Robert MERGEN, Falko LANGBEIN, Ulrich SCHMID
  • Patent number: 8324138
    Abstract: The invention documents an anti-friction lacquer containing at least one additive (5) that has a polymer matrix distributed within. Additive (5) is subject to change in temperature conditions in a temperature region with an upper threshold of 600° C. for a particular irreversible energy consuming conversion, such as phase change or modification change.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: December 4, 2012
    Assignee: Miba Gleitlager GmbH
    Inventor: Robert Mergen
  • Publication number: 20100002968
    Abstract: A plain bearing is described, comprising a steel support shell and a lead-free bearing metal layer on the basis of copper with the main alloy elements of tin and zinc applied to the support shell. In order to achieve advantageous bearing properties it is proposed that the bearing metal layer has a tin fraction of 2.5 to 11 percent by weight, a zinc fraction of 0.5 to 5 percent by weight, a fraction of zirconium and titanium together of at least 0.01 percent by weight and a fraction of phosphorus of at least 0.03 percent by weight, with the sum total of the fractions of zirconium, titanium and phosphorus being at most 0.25 percent by weight and the sum total of the fractions of tin and zinc being between 3 and 13 percent by weight.
    Type: Application
    Filed: August 28, 2007
    Publication date: January 7, 2010
    Applicant: MIBA GLEITLAGER GMBH
    Inventor: Robert Mergen
  • Publication number: 20090305916
    Abstract: The invention documents an anti-friction lacquer containing at least one additive (5) that has a polymer matrix distributed within. Additive (5) is subject to change in temperature conditions in a temperature region with an upper threshold of 600° C. for a particular irreversible energy consuming conversion, such as phase change or modification change.
    Type: Application
    Filed: July 31, 2007
    Publication date: December 10, 2009
    Applicant: IXETIC MAC GMBH
    Inventor: Robert Mergen
  • Patent number: 7572521
    Abstract: The invention relates to an aluminium alloy used as a coating for surfaces subjected to extreme friction stress, with an aluminium matrix incorporating at least a soft phase and a hard phase, as well as a process for producing the coating. The soft phase and/or the hard phase is essentially finely distributed in the aluminium matrix (20) and at least 80%, preferably at least 90%, of the soft phase or soft phase particles (18) have a mean diameter of a maximum of 3 ?m. The aluminium alloy is produced by depositing it on the base (11) by a process of deposition from a gas phase.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: August 11, 2009
    Assignee: Miba Gleitlager GmbH
    Inventors: Robert Mergen, Walter Gärtner
  • Patent number: 7281568
    Abstract: A method is described for producing a stratified composite material, with a melt of a layer material being cast progressively in a forward feed direction onto a strip-like metal carrier which is heated to a treatment temperature required for the bonding with the layer material and is cooled below the melting temperature after the casting via the metal carrier. In order to provide advantageous casting conditions it is proposed that the metal carrier is heated continuously with a temperature profile prior to the casting of the melt of the layer material in the forward feed direction, which temperature profile decreases towards lower temperatures from a maximum temperature below the treatment temperature in the region of a surface layer receiving the melt towards a core layer of the metal carrier, and that the metal carrier is heated in a surface layer by the melt to the treatment temperature upon casting of the melt which is overheated for this purpose.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: October 16, 2007
    Assignee: Miba Gleitlager GmbH
    Inventors: Robert Mergen, Günther Kutzik
  • Patent number: 7270892
    Abstract: The invention describes a friction bearing with a steel support shell and a lead-free bearing metal layer on the basis of copper with the main alloy elements of tin and zinc, which layer is applied to the support shell. In order to combine advantageous sliding properties with favorable mechanical resilience it is proposed that the bearing metal layer has a share of tin of 2.5 to 11% by weight and a share of zinc of 0.5 to 5% by weight, with the sum total of the shares of tin and zinc being between 3 and 13% by weight.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: September 18, 2007
    Assignee: Miba Gleitlager GmbH
    Inventor: Robert Mergen
  • Patent number: 7156149
    Abstract: A method is described for producing a stratified composite material, with a layer of sinterable solids particles being applied to a strip-like metal carrier and being sintered with liquid phase by the supply of heat continuously in the forward feed direction. In order to provide simplified production conditions it is proposed that the metal carrier is heated continuously in the forward feed direction with a temperature profile which decreases towards lower temperatures from a maximum temperature above the melting temperature of the solids particles in the region of a surface layer receiving the particle layer towards a core layer of the metal carrier, and that the particle layer is sintered at least in a layer resting on the metal carrier by a heat transmission from the heated metal carrier.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: January 2, 2007
    Assignee: Miba Gleitlager GmbH
    Inventors: Robert Mergen, Günter Kutzik
  • Publication number: 20060199034
    Abstract: The invention describes a friction bearing with a steel support shell and a lead-free bearing metal layer on the basis of copper with the main alloy elements of tin and zinc, which layer is applied to the support shell. In order to combine advantageous sliding properties with favorable mechanical resilience it is proposed that the bearing metal layer has a share of tin of 2.5 to 11% by weight and a share of zinc of 0.5 to 5% by weight, with the sum total of the shares of tin and zinc being between 3 and 13% by weight.
    Type: Application
    Filed: February 24, 2006
    Publication date: September 7, 2006
    Applicant: Miba Gleitlager GmbH
    Inventor: Robert Mergen
  • Publication number: 20060029827
    Abstract: The invention relates to an aluminium alloy used as a coating for surfaces subjected to extreme friction stress, with an aluminium matrix incorporating at least a soft phase and a hard phase, as well as a process for producing the coating. The soft phase and/or the hard phase is essentially finely distributed in the aluminium matrix (20) and at least 80%, preferably at least 90%, of the soft phase or soft phase particles (18) have a mean diameter of a maximum of 3 ?m. The aluminium alloy is produced by depositing it on the base (11) by a process of deposition from a gas phase.
    Type: Application
    Filed: August 3, 2005
    Publication date: February 9, 2006
    Inventors: Robert Mergen, Walter Gartner
  • Publication number: 20050281946
    Abstract: A method is described for producing a stratified composite material, with a layer of sinterable solids particles being applied to a strip-like metal carrier and being sintered with liquid phase by the supply of heat continuously in the forward feed direction. In order to provide simplified production conditions it is proposed that the metal carrier is heated continuously in the forward feed direction with a temperature profile which decreases towards lower temperatures from a maximum temperature above the melting temperature of the solids particles in the region of a surface layer receiving the particle layer towards a core layer of the metal carrier, and that the particle layer is sintered at least in a layer resting on the metal carrier by a heat transmission from the heated metal carrier.
    Type: Application
    Filed: June 1, 2005
    Publication date: December 22, 2005
    Inventors: Robert Mergen, Gunter Kutzik
  • Publication number: 20050269056
    Abstract: A method is described for producing a stratified composite material, with a melt of a layer material being cast progressively in a forward feed direction onto a strip-like metal carrier which is heated to a treatment temperature required for the bonding with the layer material and is cooled below the melting temperature after the casting via the metal carrier. In order to provide advantageous casting conditions it is proposed that the metal carrier is heated continuously with a temperature profile prior to the casting of the melt of the layer material in the forward feed direction, which temperature profile decreases towards lower temperatures from a maximum temperature below the treatment temperature in the region of a surface layer receiving the melt towards a core layer of the metal carrier, and that the metal carrier is heated in a surface layer by the melt to the treatment temperature upon casting of the melt which is overheated for this purpose.
    Type: Application
    Filed: June 1, 2005
    Publication date: December 8, 2005
    Inventors: Robert Mergen, Gunter Kutzik
  • Publication number: 20040177902
    Abstract: The invention relates to an aluminium wrought alloy with an aluminium matrix, in which at least a soft phase and hard particles are incorporated, the soft phase being at least one element from a first group of elements consisting of tin, antimony, indium and bismuth and the hard particles being scandium and/or zirconium and at least one element from a second group of elements consisting of copper, manganese, cobalt, chromium, zinc, magnesium, silicon and iron, or inter-metallic phases of scandium, zirconium with aluminium or aluminium with the elements from the second group of elements. The first element(s) from the first group of elements is (are) present in a quantity of a total of 4.5% by weight maximum, the element(s) from the second group of elements is (are) present in a quantity of a total of 8.5% by weight maximum and the scandium and/or zirconium is (are) present in a quantity of a total of 0.8% by weight maximum.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 16, 2004
    Applicant: Miba Gleitlager GmbH
    Inventors: Robert Mergen, Markus Manner
  • Patent number: 6783869
    Abstract: The invention relates to an aluminium alloy for an anti-friction element containing respectively, as a % by weight, 4.2% to 4.8% Zn, 3.0% to 7.0% Si, 0.8% to 1.2% Cu, 0.7% to 1.3% Pb, 0.12% to 0.18% Mg, 0% to 0.3% Mn and 0% to 0.2% Ni. Also incorporated, based on % by weight, are 0.05% to 0.1% Zr, 0% to 0.05% Ti, 0% to 0.4% Fe, 0% to 0.2% Sn. The rest is formed by Al with the usual incidental impurities depending on the melt.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: August 31, 2004
    Assignee: MIBA Gleitlager Aktiengesellschaft
    Inventors: Johannes Humer, Herbert Kirsch, Markus Manner, Robert Mergen
  • Patent number: 6596412
    Abstract: The invention relates to an aluminum alloy, to a plain bearing and to a method of manufacturing a layer, particularly for a plain bearing, to which there is added as a main alloy component tin (14) and a hard material (15) from at least one first element group containing iron, manganese, nickel, chromium, cobalt, copper or platinum, magnesium, or antimony. Added to the aluminum alloy from the first elementary group is a quantity of elements for forming inter-metallic phases, e.g. aluminide formation, in the boundary areas of the matrix, and further at least one further element from a second element group containing manganese, antimony, chromium, tungsten, niobium, vanadium, cobalt, silver, molybdenum of zirconium, for substituting a portion at least of a hard material of the first element group in order to form approximately spherical or cuboid aluminides (7).
    Type: Grant
    Filed: June 15, 1998
    Date of Patent: July 22, 2003
    Assignee: Miba Gleitlager Aktiengesellschaft
    Inventor: Robert Mergen
  • Publication number: 20030108765
    Abstract: The invention relates to an aluminium alloy for an anti-friction element containing respectively, as a % by weight, 4.2% to 4.8% Zn, 3.0% to 7.0% Si, 0.8% to 1.2% Cu, 0.7% to 1.3% Pb, 0.12% to 0.18% Mg, 0% to 0.3% Mn and 0% to 0.2% Ni. Also incorporated, based on % by weight, are 0.05% to 0.1% Zr, 0% to 0.05% Ti, 0% to 0.4% Fe, 0% to 0.2% Sn. The rest is formed by Al with the usual incidental impurities depending on the melt.
    Type: Application
    Filed: November 7, 2002
    Publication date: June 12, 2003
    Inventors: Johannes Humer, Herbert Kirsch, Markus Manner, Robert Mergen
  • Patent number: 6517954
    Abstract: The invention relates to an aluminium alloy, in particular for a layer of a friction bearing, for example, which, apart from aluminium and smelt-related impurities, additionally contains soft-phase formers, e.g. Sn, Pb, Bi, Sb or similar. The alloy contains added quantities of at least one element from the group of elements consisting of Sc, Y, Hf, Nb, Ta, La, lanthanides and actinides in a maximum of 10% by weight, preferably 4% by weight, in particular between 0.015% by weight and 3.25% by weight, relative to 100% by weight of alloy, the remainder being aluminium with smelt-related impurities.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: February 11, 2003
    Assignee: Miba Gleitlager Aktiengesellschaft
    Inventors: Robert Mergen, Markus Manner
  • Publication number: 20030012977
    Abstract: The invention relates to an aluminum alloy, to a plain bearing and to a method of manufacturing a layer, particularly for a plain bearing, to which there is added as a main alloy component tin (14) and a hard material (15) from at least one first element group containing iron, manganese, nickel, chromium, cobalt, copper or platinum, magnesium, or antimony. Added to the aluminum alloy from the first elementary group is a quantity of elements for forming inter-metallic phases, e.g. aluminide formation, in the boundary areas of the matrix, and further at least one further element from a second element group containing manganese, antimony, chromium, tungsten, niobium, vanadium, cobalt, silver, molybdenum of zirconium, for substituting a portion at least of a hard material of the first element group in order to form approximately spherical or cuboid aluminides (7).
    Type: Application
    Filed: June 15, 1998
    Publication date: January 16, 2003
    Inventor: ROBERT MERGEN
  • Patent number: 6506503
    Abstract: The invention relates to an intermediate layer, in particular a bonding layer, made from an alloy with an aluminium base, for multi-layered materials with layers of differing composition, in particular friction bearings. The alloy contains added quantities of at least one element from a group of elements consisting of Sc, Y, Hf, Nb, Ta, La, lanthanides and actinides in a maximum of 10% by weight, preferably 4% by weight, in particular between 0.015% by weight and 3.25% by weight, relative to 100% by weight of alloy, the remainder being aluminium with smelt-related impurities.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: January 14, 2003
    Assignee: Miba Gleitlager Aktiengesellschaft
    Inventors: Robert Mergen, Markus Manner