Patents by Inventor Robert Miyaoka

Robert Miyaoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10379228
    Abstract: A photon detector includes a sensor array of optical sensors disposed in a plane and four substantially identical scintillation crystal bars. Each optical sensor is configured to sense luminescence. Each of the four scintillator crystal bars being a rectangular prism with four side surfaces and first and second end surfaces, each scintillation bar has two side surfaces which each face a side surface of another scintillation bar, and each scintillation crystal bar generating a light scintillation in response to interacting with a received gamma photon. A first layer (80) is disposed in a first plane disposed between and adjacent facing side surfaces of the four substantially identical scintillation crystal bars with a light sharing portion (82) adjacent the first end surface and a reflective portion (84) adjacent the second end surface.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: August 13, 2019
    Assignees: KONINKLIJKE PHILIPS N.V., UNIVERSITY OF WASHINGTON
    Inventors: David Sowards-Emmerd, Adrienne Lehnert, William Hunter, Robert Miyaoka, Lingxiong Shao, Thomas Leroy Laurence
  • Publication number: 20170234990
    Abstract: A photon detector includes a sensor array of optical sensors disposed in a plane and four substantially identical scintillation crystal bars. Each optical sensor is configured to sense luminescence. Each of the four scintillator crystal bars being a rectangular prism with four side surfaces and first and second end surfaces, each scintillation bar has two side surfaces which each face a side surface of another scintillation bar, and each scintillation crystal bar generating a light scintillation in response to interacting with a received gamma photon. A first layer (80) is disposed in a first plane disposed between and adjacent facing side surfaces of the four substantially identical scintillation crystal bars with a light sharing portion (82) adjacent the first end surface and a reflective portion (84) adjacent the second end surface.
    Type: Application
    Filed: October 14, 2015
    Publication date: August 17, 2017
    Inventors: David SOWARDS-EMMERD, Adrienne LEHNERT, William HUNTER, Robert MIYAOKA, Lingxiong SHAO, Thomas Leroy LAURENCE
  • Patent number: 7956331
    Abstract: The invention disclosed herein is directed to scintillation detectors capable of detecting the position or depth of gamma photon interactions occurring within a scintillator, thereby improving the resolution of ring based positron emission tomography (PET) imaging systems. In one embodiment, the invention is directed to a scintillation detector that comprises at least one pair of side-by-side conjunct scintillation crystal bars having a shared interface between, and a solid-state semiconductor photodetector optically coupled to each output window of each individual scintillation crystal bar. The solid-state semiconductor photodetector includes an array of discrete sensitive areas disposed across a top surface of a common substrate, wherein each sensitive area contains an array of discrete micro-pixelated avalanche photodiodes, and wherein the output window of each scintillation crystal bar is optically coupled to each respective sensitive area in a one-on-one relationship.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: June 7, 2011
    Assignee: Zecotek Imaging Systems Pte. Ltd
    Inventors: Thomas Lewellen, Robert Miyaoka, Abdelmounaime Faouzi Zerrouk
  • Publication number: 20090224164
    Abstract: The invention disclosed herein is directed to scintillation detectors capable of detecting the position or depth of gamma photon interactions occurring within a scintillator, thereby improving the resolution of ring based positron emission tomography (PET) imaging systems. In one embodiment, the invention is directed to a scintillation detector that comprises at least one pair of side-by-side conjunct scintillation crystal bars having a shared interface between, and a solid-state semiconductor photodetector optically coupled to each output window of each individual scintillation crystal bar. The solid-state semiconductor photodetector includes an array of discrete sensitive areas disposed across a top surface of a common substrate, wherein each sensitive area contains an array of discrete micro-pixelated avalanche photodiodes, and wherein the output window of each scintillation crystal bar is optically coupled to each respective sensitive area in a one-on-one relationship.
    Type: Application
    Filed: October 27, 2008
    Publication date: September 10, 2009
    Inventors: Thomas Lewellen, Robert Miyaoka, Abdelmounaime Faouzi Zerrouk