Patents by Inventor Robert Morena

Robert Morena has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8148179
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition or rare earth metal such as iron, copper, vanadium, manganese, cobalt, nickel, chromium, neodymium and/or cerium. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate in a manner that causes a portion of it to swell and form a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: April 3, 2012
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Paul S. Danielson, James E. Dickinson, Jr., Stephan L. Logunov, Robert Morena, Mark L. Powley, Kamjula P. Reddy, Joseph F. Schroeder, III, Alexander Streltsov
  • Patent number: 8063560
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: November 22, 2011
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20100186449
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition or rare earth metal such as iron, copper, vanadium, manganese, cobalt, nickel, chromium, neodymium and/or cerium. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate in a manner that causes a portion of it to swell and form a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device.
    Type: Application
    Filed: March 17, 2010
    Publication date: July 29, 2010
    Inventors: Bruce G. Aitken, Paul S. Danielson, James E. Dickinson, JR., Stephan L. Longunov, Robert Morena, Mark L. Powley, Kamjula P. Reddy, Joseph F. Schroeder, III, Alexander Streltsov
  • Patent number: 7602121
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: October 13, 2009
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Patent number: 7524784
    Abstract: Glasses are disclosed which are used to produce substrates in flat panel display devices. The glasses exhibit a density less than about 2.45 gm/cm3 and a liquidus viscosity greater than about 200,000 poises, the glass consisting essentially of the following composition, expressed in terms of mol percent on an oxide basis: 65-75 SiO2, 7-13 Al2O3, 5-15 B2O3, 0-3 MgO, 5-15 CaO, 0-5 SrO, and essentially free of BaO. The glasses also exhibit a strain point exceeding 650° C.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: April 28, 2009
    Assignee: Corning Incorporated
    Inventors: Lisa C. Chacon, Adam J. G. Ellison, George B. Hares, Jeffrey T. Kohli, Josef C. Lapp, Robert Morena
  • Patent number: 7407423
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: August 5, 2008
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20080160221
    Abstract: Glasses are disclosed which are used to produce substrates in flat panel display devices. The glasses exhibit a density less than about 2.45 gm/cm3 and a liquidus viscosity greater than about 200,000 poises, the glass consisting essentially of the following composition, expressed in terms of mol percent on an oxide basis: 65-75 SiO2, 7-13 Al2O3, 5-15 B2O3, 0-3 MgO, 5-15 CaO, 0-5 SrO, and essentially free of BaO. The glasses also exhibit a strain point exceeding 650° C.
    Type: Application
    Filed: March 10, 2008
    Publication date: July 3, 2008
    Inventors: Lisa C. Chacon, Adam J. G. Ellison, George B. Hares, Jeffrey T. Kohli, Josef C. Lapp, Robert Morena
  • Patent number: 7365038
    Abstract: Glasses are disclosed which are used to produce substrates in flat panel display devices. The glasses exhibit a density less than about 2.45 gm/cm3 and a liquidus viscosity greater than about 200,000 poises, the glass consisting essentially of the following composition, expressed in terms of mol percent on an oxide basis: 65–75 SiO2, 7–13 Al2O3, 5–15 B2O3, 0–3 MgO, 5–15 CaO, 0–5 SrO, and essentially free of BaO. The glasses also exhibit a strain point exceeding 650° C.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: April 29, 2008
    Assignee: Corning Incorporated
    Inventors: Lisa C. Chacon, Adam J. G. Ellison, George B. Hares, Jeffrey T. Kohli, Josef C. Lapp, Robert Morena
  • Publication number: 20070123410
    Abstract: The invention is directed to a glass composition that can be used to make glass frits suitable for use in the manufacturing of microreactors. The glass compositions, after final sintering to produce a finished microreactor, have a surface crystalline layer of 30 ?m or less, or are completely amorphous throughout. Generally, the borosilicate glasses of the invention have a composition of B2O3=12-22 mol %; SiO2=68-80 mol % and additional components selected from the group consisting of either (a) Al2O3=3-8 mol % and Li2O=1-8 mol %, or (b) K2O=0-2 mol % and Na2O=0-2 mol %, except that both K2O and Na2O cannot both equal zero at the same time. One borosilicate glass has a composition, in mole percent (mol %) of B2O3=18-22 mol %, SiO2=75-80 mol %, K2O=0-2 mol %, and Na2O=0-2 mol %, except that both K2O and Na2O cannot both equal zero at the same time.
    Type: Application
    Filed: November 8, 2006
    Publication date: May 31, 2007
    Inventors: Robert Morena, Paulo Marques, Henry Hagy
  • Publication number: 20070007894
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: September 15, 2006
    Publication date: January 11, 2007
    Inventors: Bruce Aitken, Joel Carberry, Steven DeMartino, Henry Hagy, Lisa Lamberson, Richard Miller, Robert Morena, Joseph Schroeder, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20060172875
    Abstract: A solid oxide fuel cell device incorporates a sealing material resistant to hydrogen gas permeation at a sealing temperature in the intermediate temperature range of 600° C.-900° C., the seal having a CTE in the 100×10?7/° C. to 120×10?7/° C., wherein the sealing material comprises in weight %, of: (i) a 80 wt % to 100 wt % glass frit, the glass frit itself having a composition comprising in mole percent of: SiO2 15-65; Li2O 0-5; Na2O 0-5; K2O 0-10; MgO 0-5; CaO 0-32; Al2O3 0-10; B2O3 0-50; SrO 0 to 25, wherein the total amount of alkalis is less than 10 mole %; and (ii) zirconia or leucite addition 0 wt % to 30 wt.
    Type: Application
    Filed: February 3, 2005
    Publication date: August 3, 2006
    Inventors: Jeffrey Cortright, Lisa Lamberson, Pamela Maurey, Robert Morena
  • Publication number: 20060160690
    Abstract: A solid oxide fuel cell device incorporates a sealing material resistant to hydrogen gas permeation at a sealing temperature in the intermediate temperature range of 600° C.-800° C., the seal having a CTE in the 100×10?7/° C. to 120×10?7/° C., wherein the sealing material comprises in weight %, of: (i) a 80 to 95 wt % of glass frit, the glass frit itself having a composition in mole percent of: SiO2 70-85%; Al2O3 0-5%; Na2O3 0-8%; K2O 10-25%; ZnO 0-10%; ZrO2 0-6%; MgO 0-7%; TiO2 0-2%; and (ii) and 5 wt % to 25 wt % of addition comprising at least one of: alumina, zirconia or leucite.
    Type: Application
    Filed: January 18, 2005
    Publication date: July 20, 2006
    Inventors: Jeffrey Cortright, Lisa Lamberson, Pamela Maurey, Robert Morena
  • Publication number: 20060122050
    Abstract: The invention is directed to a birefringent glass having a R2O—Al2O3—B2O3—SiO2 base composition, where R2O represents alkali metal oxides, and a precipitated silver halide phase with a volume fraction of at least 0.001. The birefringent glass composition of the invention can be used to produce monolithic zero-order wave plates having a thickness less than 2 mm. These wave plates can be used to introduce a phase shift between polarized components of light transmitted through the glass.
    Type: Application
    Filed: December 7, 2004
    Publication date: June 8, 2006
    Inventors: Nicholas Borrelli, Robert Morena, David Morse
  • Patent number: 7032412
    Abstract: Methods of manufacturing glass sheets with manufacturing systems that including platinum-containing components are provided. The method includes providing a barrier coating to reduce the hydrogen permeability of the platinum-containing components which reduces the propensity for blistering of glass sheets made using the components.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: April 25, 2006
    Assignee: Corning Incorporated
    Inventors: William G. Dorfeld, David M. Lineman, Robert Morena, James P. Murphy, Randy D. Ziegenhagen
  • Patent number: 6998776
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: February 14, 2006
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, Joel P. Carberry, Steven E. DeMartino, Henry E. Hagy, Lisa A. Lamberson, Richard J. Miller, II, Robert Morena, Joseph F. Schroeder, III, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20060009109
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: September 16, 2005
    Publication date: January 12, 2006
    Inventors: Bruce Aitken, Joel Carberry, Steven DeMartino, Henry Hagy, Lisa Lamberson, Richard Miller, Robert Morena, Joseph Schroeder, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20050116245
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition or rare earth metal such as iron, copper, vanadium, manganese, cobalt, nickel, chromium, neodymium and/or cerium. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate in a manner that causes a portion of it to swell and form a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device.
    Type: Application
    Filed: October 13, 2004
    Publication date: June 2, 2005
    Inventors: Bruce Aitken, Paul Danielson, James Dickinson, Stephan Logunov, Robert Morena, Mark Powley, Kamjula Reddy, Joseph Schroeder, Alexander Streltsov
  • Publication number: 20050084440
    Abstract: Glasses are disclosed which are used to produce substrates in flat panel display devices. The glasses exhibit a density less than about 2.45 gm/cm3 and a liquidus viscosity greater than about 200,000 poises, the glass consisting essentially of the following composition, expressed in terms of mol percent on an oxide basis: 65-75 SiO2, 7-13 Al2O3, 5-15 B2O3, 0-3 MgO, 5-15 CaO, 0-5 SrO, and essentially free of BaO. The glasses also exhibit a strain point exceeding 650° C.
    Type: Application
    Filed: October 7, 2004
    Publication date: April 21, 2005
    Applicant: Corning Incorporated
    Inventors: Lisa Chacon, Adam Ellison, George Hares, Jeffrey Kohli, Josef Lapp, Robert Morena
  • Publication number: 20050001545
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: April 13, 2004
    Publication date: January 6, 2005
    Inventors: Bruce Aitken, Joel Carberry, Steven DeMartino, Henry Hagy, Lisa Lamberson, Richard Miller, Robert Morena, Joseph Schroeder, Alexander Streltsov, Sujanto Widjaja
  • Patent number: 6831029
    Abstract: Glasses are disclosed which are used to produce substrates in flat panel display devices. The glasses exhibit a density less than about 2.45 gm/cm3 and a liquidus viscosity greater than about 200,000 poises, the glass consisting essentially of the following composition, expressed in terms of mol percent on an oxide basis: 65-75 SiO2, 7-13 Al2O3, 5-15 B2O3, 0-3 MgO, 5-15 CaO, 0-5 SrO, and essentially free of BaO. The glasses also exhibit a strain point exceeding 650° C.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: December 14, 2004
    Assignee: Corning Incorporated
    Inventors: Lisa C. Chacon, Adam J. G. Ellison, George B. Hares, Jeffrey T. Kohli, Josef C. Lapp, Robert Morena