Patents by Inventor Robert N. Brucato

Robert N. Brucato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030231844
    Abstract: An apparatus serving as a Fabry-Perot optical device, including: a large-diameter elongated optical waveguide having a core and having an air gap region disposed along the longitudinal axis of the waveguide, and with the air gap region enclosed by end faces substantially perpendicular to the longitudinal axis of the waveguide, the waveguide also having a cavity delimited on at least one side by an endface of the air gap, wherein the endface is at least partially reflective. From another perspective, the invention provides an apparatus including: a force-applying assembly, responsive to a control signal containing information about a selected resonated wavelength or a selected filtered wavelength derived from an optical signal, for providing a force; and a Fabry-Perot optical structure, responsive to the force, and further responsive to the optical signal, for providing a Fabry-Perot optical structure signal either with the selected resonated wavelength or without the selected filtered wavelength.
    Type: Application
    Filed: June 17, 2002
    Publication date: December 18, 2003
    Inventors: Alan D. Kersey, Paul E. Sanders, Martin A. Putnam, Robert N. Brucato, James S. Sirkis
  • Patent number: 6621957
    Abstract: A temperature compensated optical device includes a compression-tuned glass element 10 having a Bragg grating 12 therein, a compensating material spacer 26 and an end cap 28 all held within an outer shell 30. The element 10, end cap 28 and shell 30 are made of a material having a low coefficient of thermal expansion (CTE), e.g., silica, quartz, etc. and the spacer 26 is made of a material having a higher CTE, e.g., metal, Pyrex®, ceramic, etc. The material and length L5 of the spacer 26 is selected to offset the upward grating wavelength shift due to temperature. As temperature rises, the spacer 26 expands faster than the silica structure causing a compressive strain to be exerted on the element 10, which shifts the wavelength of the grating 12 down to balance the intrinsic temperature induces wavelength shift up. As a result, the grating 12 wavelength is substantially unchanged over a wide temperature range.
    Type: Grant
    Filed: October 30, 2000
    Date of Patent: September 16, 2003
    Assignee: CiDRA Corporation
    Inventors: James M. Sullivan, Timothy J. Bailey, Robert N. Brucato, Thomas W. Engel, Mark R. Fernald, Richard T. Jones, Alan D. Kersey, Trevor MacDougall, Matthew B. Miller, Martin A. Putnam, Paul E. Sanders, James S. Sirkis
  • Patent number: 6597711
    Abstract: A compression-tuned Bragg grating-based laser 800 includes a pair of optical grating elements 802,804 wherein at least one of the grating elements is tunable by a compression device 812,814. The grating elements may include either an optical fiber 10 having at least one Bragg grating 12 impressed therein encased within and fused to at least a portion of a glass capillary tube 20 or a large diameter waveguide grating element 600 having a core and a wide cladding. The tunable grating element(s) 802,804 are axially compressed, which causes a shift in the reflection wavelength of the gratings 807,809 without buckling the element. The shape of the element may be other geometries (e.g., a “dogbone” shape) and/or more than one grating or pair of gratings may be used and more than one fiber 10 or core 612 may be used. A gain element, such as Erbium doped fiber, is optical disposed between the grating elements to provide the lasing cavity.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: July 22, 2003
    Assignee: CiDRA Corporation
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Michael A. Davis, Robert N. Brucato, Martin A. Putnam, Alan D. Kersey, Paul E. Sanders, Jon T. Kringlebotn
  • Patent number: 6519388
    Abstract: A tube-encased fiber grating includes an optical fiber 10 having at least one Bragg grating 12 impressed therein which is embedded within a glass capillary tube 20. Light 14 is incident on the grating 12 and light 16 is reflected at a reflection wavelength &lgr;1. The shape of the tube 20 may be other geometries (e.g., a “dogbone” shape) and/or more than one concentric tube may be used or more than one grating or pair of gratings may be used. The fiber 10 may be doped at least between a pair of gratings 150,152, encased in the tube 20 to form a tube-encased compression-tuned fiber laser or the grating 12 or gratings 150,152 may be constructed as a tunable DFB fiber laser encased in the tube 20. Also, the tube 20 may have an inner region 22 which is tapered away from the fiber 10 to provide strain relief for the fiber 10, or the tube 20 may have tapered (or fluted) sections 27 which have an outer geometry that decreases down to the fiber 10 and provides added fiber pull strength.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: February 11, 2003
    Assignee: CiDRA Corporation
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Michael A. Davis, Peter Ogle, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders
  • Publication number: 20030021306
    Abstract: A compression-tuned Bragg grating-based laser 800 includes a pair of optical grating elements 802,804 wherein at least one of the grating elements is tunable by a compression device 812,814. The grating elements may include either an optical fiber 10 having at least one Bragg grating 12 impressed therein encased within and fused to at least a portion of a glass capillary tube 20 or a large diameter waveguide grating element 600 having a core and a wide cladding. The tunable grating element(s) 802,804 are axially compressed, which causes a shift in the reflection wavelength of the gratings 807,809 without buckling the element. The shape of the element may be other geometries (e.g., a “dogbone” shape) and/or more than one grating or pair of gratings may be used and more than one fiber 10 or core 612 may be used. A gain element, such as Erbium doped fiber, is optical disposed between the grating elements to provide the lasing cavity.
    Type: Application
    Filed: May 16, 2002
    Publication date: January 30, 2003
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Michael A. Davis, Robert N. Brucato, Martin A. Putnam, Alan D. Kersey, Paul E. Sanders, Jon T. Kringlebotn
  • Publication number: 20020197037
    Abstract: A large diameter D-shaped optical waveguide device 9, includes an optional circular waveguide portion 11 and a D-shaped waveguide portion 10 having at least one core 12 surrounded by a cladding 14. A portion of the waveguide device 9 has a generally D-shaped cross-section and has transverse waveguide dimension d2 greater than about 0.3 mm. At least one Bragg grating 16 may be impressed in the waveguide 10 and/or more than one grating or pair of gratings may be used and more than one core may be used. The device 9 provides a sturdy waveguide platform for coupling light into and out of waveguides and for attachment and alignment to other waveguides, for single and multi-core applications. The core and/or cladding 12,14 may be doped with a rare-earth dopant and/or may be photosensitive. At least a portion of the core 12 may be doped between a pair of gratings 50,52 to form a fiber laser or the grating 16 or may be constructed as a tunable DFB fiber laser or an interactive fiber laser within the waveguide 10.
    Type: Application
    Filed: March 18, 2002
    Publication date: December 26, 2002
    Inventors: Timothy J. Bailey, Robert N. Brucato, Alan D. Kersey, Martin A. Putnam, Paul Sanders, James Sullivan
  • Publication number: 20020194917
    Abstract: A fiber grating pressure sensor includes an optical sensing element 20,600 which includes an optical fiber 10 having a Bragg grating 12 impressed therein which is encased within and fused to at least a portion of a glass capillary tube 20 and/or a large diameter waveguide grating 600 having a core and a wide cladding and which has an outer transverse dimension of at least 0.3 mm. Light 14 is incident on the grating 12 and light 16 is reflected from the grating 12 at a reflection wavelength &lgr;1. The sensing element 20,600 may be used by itself as a sensor or located within a housing 48,60,90,270,300. When external pressure P increases, the grating 12 is compressed and the reflection wavelength &lgr;1 changes. The shape of the sensing element 20,600 may have other geometries, e.g., a “dogbone” shape, so as to enhance the sensitivity of shift in &lgr;1 due to applied external pressure and may be fused to an outer shell 50.
    Type: Application
    Filed: July 9, 2002
    Publication date: December 26, 2002
    Applicant: Weatherford/Lamb, Inc.
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, James R. Dunphy, Michael A. Davis, Christopher J. Wright, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders
  • Publication number: 20020196995
    Abstract: An optical sensing device including a force-applying assembly for providing a force and a Fabry-Perot (FP) element including a large-diameter waveguide having a core and having a cavity in line with the core, the cavity having reflective surfaces and having an optical path length related to the distance between the reflective surfaces, the FP element being coupled to the force so that the optical path length changes according to the force, the FP element for providing an output optical signal containing information about a parameter that relates to the force. Sometimes the large-diameter waveguide is formed by collapsing a glass tube, having a bore and having an outer diameter of about one millimeter, onto a pair of optical fibers arranged in tandem in the bore and separated by a predetermined distance, and respective end faces of the optical fibers form the cavity and are coated with a wholly or partially reflective material.
    Type: Application
    Filed: May 17, 2002
    Publication date: December 26, 2002
    Applicant: WEATHERFORD/LAMB, INC.
    Inventors: Alan D. Kersey, Martin A. Putnam, Mark R. Fernald, Robert N. Brucato, James S. Sirkis
  • Publication number: 20020172446
    Abstract: A pressure-isolated Bragg grating temperature sensor includes an optical element 20,600 which includes an optical fiber 10 having at least one Bragg grating 12 disposed therein which is encased within and fused to at least a portion of an inner glass capillary tube 20 and/or a large diameter waveguide grating 600 having a core and a wide cladding and having the grating 12 disposed therein, which is encased within an outer tube 40 to form a chamber 44. An extended portion 58 of the sensing element that has the grating 12 therein extends inwardly into the chamber 44 which allows the grating 12 to sense temperature changes but isolates the grating 12 from external pressure. An end tube 42 may be attached to the tube 40 and the fiber 10 fed therethrough to form the chamber 44 and a pass-through for the fiber 10. As the external pressure P increases, the outer tube 40 compresses or deflects, the sensing element 20,600 moves closer to the end tube 42 and/or the outer tube 40 move toward each other.
    Type: Application
    Filed: July 12, 2002
    Publication date: November 21, 2002
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Richard T. Jones, Christopher J. Wright, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders
  • Publication number: 20020154860
    Abstract: A fiber grating pressure sensor for use in an industrial process includes an optical sensing element 20,600 which includes an optical fiber 10 having a Bragg grating 12 impressed therein which is encased within and fused to at least a portion of a glass capillary tube 20 and/or a large diameter waveguide grating 600 having a core and a wide cladding and which has an outer transverse dimension of at least 0.3 mm. Light 14 is incident on the grating 12 and light 16 is reflected from the grating 12 at a reflection wavelength &lgr;1. The sensing element 20,600 may be used by itself as a sensor or located within a housing 48,60,90,270,300. When external pressure P increases, the grating 12 is compressed and the reflection wavelength &lgr;1 changes. The shape of the sensing element 20,600 may have other geometries, e.g., a “dogbone” shape, so as to enhance the sensitivity of shift in &lgr;1 due to applied external pressure and may be fused to an outer shell 50.
    Type: Application
    Filed: November 8, 2001
    Publication date: October 24, 2002
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, James R. Dunphy, Michael A. Davis, Christopher J. Wright, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders
  • Patent number: 6470036
    Abstract: A tunable external cavity semiconductor laser incorporating a tunable Bragg grating, including: a semiconductor gain medium; an elongated tuner housing having a tuner housing head and having a tuner housing foot, the tuner housing head and tuner housing foot being rigidly connected; a span of waveguide having a Bragg grating, for receiving the source light and for providing in turn the reflected light, and having a waveguide head and a waveguide foot, the waveguide head abutting the tuner housing head and the waveguide foot disposed toward the tuner housing foot; a piezoelectric crystal or other device or arrangement for providing a compressive force, disposed so as to abut the waveguide foot and also to abut the tuner housing foot, the means for applying a compressive force for exerting a compressive force on the span of waveguide along the direction of the axis of the span of waveguide, the compressive force being sufficient to alter the grating so as to affect the wavelength of light reflected by the grati
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: October 22, 2002
    Assignee: CiDRA Corporation
    Inventors: Timothy J. Bailey, Robert N. Brucato, Michael A. Davis, Alan D. Kersey, Martin A. Putnam, Paul E. Sanders, James S. Sirkis
  • Patent number: 6452667
    Abstract: A pressure-isolated Bragg grating temperature sensor includes an optical element which includes an optical fiber having at least one Bragg grating disposed therein. The Bragg grating is encased within and fused to at least a portion of an inner glass capillary tube, or comprises a large diameter waveguide grating having a core and a wide cladding and having the grating disposed therein, encased within an outer tube to form a chamber. An extended portion of the sensing element that has the grating therein extends inwardly into the chamber which allows the grating to sense temperature changes but isolates the grating from external pressure. More than one grating or pair of gratings may be used and more than one fiber or optical core may be used. At least a portion of the sensing element may be doped between a pair of gratings to form a temperature tuned laser, or the grating or gratings may be configured as a tunable DFB laser disposed in the sensing element.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: September 17, 2002
    Assignee: Weatherford/Lamb Inc.
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Richard T. Jones, Christopher J. Wright, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders
  • Patent number: 6422084
    Abstract: A fiber grating pressure sensor includes an optical sensing element 20, 600 which includes an optical fiber 10 having a Bragg grating 12 impressed therein which is encased within and fused to at least a portion of a glass capillary tube 20 and/or a large diameter waveguide grating 600 having a core and a wide cladding and which has an outer transverse dimension of at least 0.3 mm. Light 14 is incident on the grating 12 and light 16 is reflected from the grating 12 at a reflection wavelength &lgr;1. The sensing element 20, 600 may be used by itself as a sensor or located within a housing 48, 60, 90, 270, 300. When external pressure P increases, the grating 12 is compressed and the reflection wavelength &lgr;1 changes. The shape of the sensing element 20, 600 may have other geometries, e.g., a “dogbone” shape, so as to enhance the sensitivity of shift in &lgr;1 due to applied external pressure and may be fused to an outer shell 50.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: July 23, 2002
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, James R. Dunphy, Michael A. Davis, Christopher J. Wright, Alan D. Kersey, Martin A. Putnam, Robert N. Brucato, Paul E. Sanders
  • Patent number: 6363089
    Abstract: A compression-tuned bragg grating includes a tunable optical element 20,600 which includes either an optical fiber 10 having at least one Bragg grating 12 impressed therein encased within and fused to at least a portion of a glass capillary tube 20or a large diameter waveguide grating 600 having a core and a wide cladding. Light 14 is incident on the grating 12 and light 16 is reflected at a reflection wavelength &lgr;1. The tunable element 20,600 is axially compressed which causes a shift in the reflection wavelength of the grating 12 without buckling the element. The shape of the element may be other geometries (e.g., a “dogbone” shape) and/or more than one grating or pair of gratings may be used and more than one fiber 10 or core 612 may be used. At least a portion of the element may be doped between a pair of gratings 150,152, to form a compression-tuned laser or the grating 12 or gratings 150,152 may be constructed as a tunable DFB laser.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: March 26, 2002
    Assignee: CiDRA Corporation
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Michael A. Davis, Robert N. Brucato, Martin A. Putnam, Alan D. Kersey, Paul E. Sanders
  • Patent number: 6310990
    Abstract: A tunable optical device has a compression tuned optical structure and a displacement sensor. The compression tuned optical structure responds to an optical signal, and further responds to a displacement sensor signal, for providing a compression tuned optical structure signal containing information about a change in an optical characteristic of the compression tuned optical structure, and for also further providing an excitation caused by a change in a displacement of the compression tuned optical structure. The displacement sensor responds to the excitation, for providing a displacement sensor signal containing information about the change in the displacement of the compression tuned optical structure. The compression tuned optical structure may be in the form of a dogbone structure that is an all-glass compression unit having wider end portions separated by a narrower intermediate portion.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: October 30, 2001
    Assignee: CiDRA Corporation
    Inventors: Martin A. Putnam, Robert N. Brucato, Michael A. Davis, David G. Bellemore, Walter A. Helm
  • Patent number: 6249624
    Abstract: A method and apparatus for forming a Bragg grating using a high intensity light includes a pair of focussed writing beams 26,34 that simultaneously intersect and interfere with each other at a region 30 of a photosensitive optical fiber 28. The beams 26,34 have a high intensity (e.g., at least about 500 mjoules/cm2) and pass through an interface medium 50 that is substantially transparent to the wavelength of the writing beams 26,34. The medium has a thickness T set such that the intensity of the beams at the surface 56 of the medium 50 is below an surface damage intensity such that no ablations occur on the fiber 28 or the surface 56 when the fiber 28 is exposed to the beams 26,34.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: June 19, 2001
    Assignee: CiDRA Corporation
    Inventors: Martin A. Putnam, Robert N. Brucato
  • Patent number: 6229827
    Abstract: A compression-tuned bragg grating includes a tunable optical element 20,600 which includes either an optical fiber 10 having at least one Bragg grating 12 impressed therein encased within and fused to at least a portion of a glass capillary tube 20 or a large diameter waveguide grating 600 having a core and a wide cladding. Light 14 is incident on the grating 12 and light 16 is reflected at a reflection wavelength &lgr;1. The tunable element 20,600 is axially compressed which causes a shift in the reflection wavelength of the grating 12 without buckling the element. The shape of the element may be other geometries (e.g., a “dogbone” shape) and/or more than one grating or pair of gratings may be used and more than one fiber 10 or core 612 may be used. At least a portion of the element may be doped between a pair of gratings 150,152, to form a compression-tuned laser or the grating 12 orgratings 150,152 may be constructed as a tunable DFB laser.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: May 8, 2001
    Assignee: CiDRA Corporation
    Inventors: Mark R. Fernald, Timothy J. Bailey, Matthew B. Miller, James M. Sullivan, Michael A. Davis, Robert N. Brucato, Martin A. Putnam, Alan D. Kersey, Paul E. Sanders