Patents by Inventor Robert N. Webb

Robert N. Webb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9200152
    Abstract: An elastomeric nanocomposite contains: (a) at least one elastomer comprising units derived from isoolefins having from 4 to 7 carbon atoms; (b) at least 10 phr of a carbon black; and (c) at least 1 phr of a nanoclay; wherein when the nanocomposite is used in an article, the article has a gas permeation coefficient of 80.0 cc*mm/[m2-day] at 40° C. The carbon black may be graphitized to reduce interactions between the carbon black and the nanoclays. The elastomeric nanocomposite may, with or without the use of the graphitized carbon black, may calendared or extruded in such a manner as to orient the nanoclay platelets within the composition such that the oriented nanoclay elastomer nanocomposite has an orientation parameter of greater than 0.15.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: December 1, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Weiqing Weng, Michael B. Rodgers, Molly W. Johnston, John P. Soisson, Robert N. Webb
  • Patent number: 8883906
    Abstract: A nanocomposite is formed from at least one copolymer and at least one nanofiller. The copolymer is formed of units derived from isoolefins having from 4 to 7 carbon atoms and multiolefins. The nanofiller comprising a surfactant wherein the surfactant has the structure of (R1R2R3R4)N+ wherein R1 is benzyl derived unit, which may or may not be substituted, wherein R2 is selected from C1 to C26 alkyls, C2 to C26 alkenes, and C3 to C26 aryls, and wherein R3 and R4 are the same or different and are independently selected from C9 to C26 alkyls, C9 to C26 alkenes, and C9 to C26 aryls.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: November 11, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael B. Rodgers, Weiqing Weng, John P. Soisson, Robert N. Webb, Sunny Jacob, Molly W. Johnston
  • Patent number: 8598261
    Abstract: A process for producing a nanocomposite of a halogenated elastomer and an inorganic, exfoliated clay includes the in-situ protonation of a modifier, which may be an alkylamine, arylamine or an alkylarylamine. This process can be integrated with a polymer halogenation process. The nanocomposite so formed has improved air barrier properties and is suitable for use as a tire innerliner or innertube.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: December 3, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Weiqing Weng, James P. Stokes, Edmund J. Stachowski, III, Molly J. Upton, Robert N. Webb, Ramesh Varadaraj, Cornelius H. Brons, David J. Lohse
  • Patent number: 8242236
    Abstract: An elastomeric nanocomposite is produced from an isobutylene-based polymer and a layered nanofiller. The process of preparing the nanocomposite includes the steps of a) polymerizing isobutylene monomers and multiolefin monomers to produce an isobutylene-based polymer; b) completing at least one mass transfer dependent stage in the process wherein, after completion of the stage and prior to any recovery of the polymer, the polymer is dissolved in a solvent to create a polymer cement; c) contacting the layered nanofiller and the polymer solvent to obtain the nanocomposite; and d) recovering the nanocomposite. The layered nanofiller may be in a slurry prior to contacting with the polymer cement.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: August 14, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John P. Soisson, Yuan-Ju (Ray) Chen, Weiqing Weng, Michael Brendan Rodgers, Robert N. Webb
  • Publication number: 20120190772
    Abstract: An elastomeric nanocomposite contains: (a) at least one elastomer comprising units derived from isoolefins having from 4 to 7 carbon atoms; (b) at least 10 phr of a carbon black; and (c) at least 1 phr of a nanoclay; wherein when the nanocomposite is used in an article, the article has a gas permeation coefficient of 80.0 cc*mm/[m2-day] at 40° C. The carbon black may be graphitized to reduce interactions between the carbon black and the nanoclays. The elastomeric nanocomposite may, with or without the use of the graphitized carbon black, may calendared or extruded in such a manner as to orient the nanoclay platelets within the composition such that the oriented nanoclay elastomer nanocomposite has an orientation parameter of greater than 0.15.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 26, 2012
    Inventors: Weiqing Weng, Michael B. Rodgers, Molly W. Johnston, John P. Soisson, Robert N. Webb
  • Patent number: 8178465
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: May 15, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Patent number: 8148450
    Abstract: Provided for herein is a process to produce an essentially homogeneous single liquid phase hydrocarbon-rubber cement from a polymer slurry comprising a hydrocarbon-rubber, a diluent, and unreacted monomer(s), the process comprising: (a) contacting the polymer slurry with a hydrocarbon solvent; and (b) removing the diluent in amounts not sufficiently more than is necessary to produce the essentially homogeneous single liquid phase hydrocarbon-rubber cement wherein the mass fraction of monomer(s) in the hydrocarbon-rubber cement, based on the total amount of hydrocarbon-rubber present in the hydrocarbon-rubber cement, is less than the mass fraction of monomer(s) in the hydrocarbon-rubber slurry, based on the total amount of hydrocarbon-rubber present in the hydrocarbon-rubber slurry, wherein the diluent comprises a hydrofluorocarbon.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: April 3, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael F. McDonald, Scott T. Milner, Timothy D. Shaffer, Robert N. Webb, Richard D. Hembree
  • Publication number: 20110294939
    Abstract: An elastomeric nanocomposite is produced from an isobutylene-based polymer and a layered nanofiller. The process of preparing the nanocomposite includes the steps of a) polymerizing isobutylene monomers and multiolefin monomers to produce an isobutylene-based polymer; b) completing at least one mass transfer dependent stage in the process wherein, after completion of the stage and prior to any recovery of the polymer, the polymer is dissolved in a solvent to create a polymer cement; c) contacting the layered nanofiller and the polymer solvent to obtain the nanocomposite; and d) recovering the nanocomposite. The layered nanofiller may be in a slurry prior to contacting with the polymer cement.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 1, 2011
    Inventors: John P. Soisson, Yuan-Ju (Ray) Chen, Weiqing Weng, Michael Brendan Rodgers, Robert N. Webb
  • Publication number: 20110250372
    Abstract: A process for producing a nanocomposite of a halogenated elastomer and an inorganic, exfoliated clay includes the in-situ protonation of a modifier, which may be an alkylamine, arylamine or an alkylarylamine. This process can be integrated with a polymer halogenation process. The nanocomposite so formed has improved air barrier properties and is suitable for use as a tire innerliner or innertube.
    Type: Application
    Filed: October 14, 2008
    Publication date: October 13, 2011
    Inventors: Weiqing Weng, James P. Stokes, Edmund J. Stachowski III, Molly W. Upton, Robert N. Webb, Ramesh Varadaraj, Cornelius H. Brons, David J. Lohse
  • Patent number: 7981991
    Abstract: Methods for producing elastomers or elastomeric compositions are provided. One or more C4 to C7 isoolefins and one or more comonomers can be polymerized in the presence of a diluent comprising one or more hydrofluorocarbons to provide a slurry comprising polymer product, unreacted monomer and the diluent. The slurry can be extruded to separate at least a portion of the diluent from the polymer product. The separated diluent can be recycled for polymerizing the one or more C4 to C7 isoolefins.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: July 19, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael F. McDonald, Scott T. Milner, Timothy D. Shaffer, Robert N. Webb
  • Publication number: 20110152422
    Abstract: A nanocomposite is formed from at least one copolymer and at least one nanofiller. The copolymer is formed of units derived from isoolefins having from 4 to 7 carbon atoms and multiolefins. The nanofiller comprising a surfactant wherein the surfactant has the structure of (R1R2R3R4)N+ wherein R1 is benzyl derived unit, which may or may not be substituted, wherein R2 is selected from C1 to C26 alkyls, C2 to C26 alkenes, and C3 to C26 aryls, and wherein R3 and R4 are the same or different and are independently selected from C9 to C26 alkyls, C9 to C26 alkenes, and C9 to C26 aryls.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 23, 2011
    Inventors: Michael B. Rodgers, Weiqing Weng, John P. Soisson, Robert N. Webb, Sunny Jacob, Molly W. Johnston
  • Publication number: 20110111950
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 12, 2011
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Patent number: 7906600
    Abstract: The present invention provides an elastomeric composition processable in a curable, filled rubber formulation. The composition comprises a halogenated interpolymer of a C4 to C7 isoolefin and from 3 to 20 weight percent alkylstyrene and comprising from 0.2 to 2 mole percent haloalkylstyrene, a Mooney viscosity less than 27, a number average molecular weight less than 270,000, a weight average molecular weight less than 470,000, a z-average molecular weight less than 700,000, and a branching index (g?) from 0.4 to 1.1. Also disclosed are a method of making a cured, filled rubber article, comprising compounding the elastomeric composition with filler and curative, processing the compounded composition to form a shape of the article, and curing the composition to obtain the article in the formed shape, as well as a tire comprising an innerliner made by the method.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 15, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Walter H. Waddell, Dirk F. Rouckhout, James P. Stokes, Arthur J. Sullivan, Donald S. Tracey, Robert N. Webb
  • Patent number: 7893176
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: February 22, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Publication number: 20080262180
    Abstract: Methods for producing elastomers or elastomeric compositions are provided. One or more C4 to C7 isoolefins and one or more comonomers can be polymerized in the presence of a diluent comprising one or more hydrofluorocarbons to provide a slurry comprising polymer product, unreacted monomer and the diluent. The slurry can be extruded to separate at least a portion of the diluent from the polymer product. The separated diluent can be recycled for polymerizing the one or more C4 to C7 isoolefins.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 23, 2008
    Inventors: Michael F. McDonald, Scott T. Milner, Timothy D. Shaffer, Robert N. Webb
  • Publication number: 20080234447
    Abstract: The disclosure provides for a process and polymerization system to produce isoolefin polymers (72) utilizing polymorphogenates (16, 26) in the catalyst system to control polydispersity (MWD). The disclosure also provides a catalyst system (20) comprising a plurality of active catalyst complex species (34) formed by combination of a Lewis acid (24), an initiator (22) and a polymorphogenate (26), as well as polymers made using the catalyst system or process. The polymorphogenate (16, 26) can promote or mimic the formation of different active catalyst complex species (34) having different polymerization rates, i.e. different rates of propagation, chain transfer, or termination, as observed by different polydispersities resulting from the presence of relatively different proportions of the polymorphogenate.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 25, 2008
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Patent number: 7402636
    Abstract: The disclosure provides a slurry polymerization system and method to decrease polymer deposition on reactor surfaces using an oxygenate such as alcohol (16) supplied to the polymerization medium (32) separate from the catalyst feed (34).
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: July 22, 2008
    Assignee: ExxonMobil Chemical Patents Inc
    Inventors: Timothy D. Shaffer, Michael F. McDonald, David Y. Chung, Robert N. Webb, Deborah J. Davis, Pamela J. Wright
  • Patent number: 6939933
    Abstract: The invention relates to a new catalyst system that improves the heat transfer capability of a butyl reactor slurry process system in the production of random copolymers of one or more isoolefin monomers and one or more conjugated diene monomers in continuous slurry polymerization processes. The process is carried out in an anhydrous polymerization system containing a mixture of the monomers in a polar diluent along with a Lewis acid and a C5 or greater initiator having a tertiary halide.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: September 6, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert N. Webb, David Y. Chung, Andrew B. Donnalley, Michael F. McDonald, Kenneth W. Powers, Ralph Howard Schatz
  • Publication number: 20040054103
    Abstract: The invention relates to a new catalyst system that improves the heat transfer capability of a butyl reactor slurry process system in the production of random copolymers of one or more isoolefin monomers and one or more conjugated diene monomers in continuous slurry polymerization processes. The process is carried out in an anhydrous polymerization system containing a mixture of the monomers in a polar diluent along with a Lewis acid and a C5 or greater initiator having a tertiary halide.
    Type: Application
    Filed: June 2, 2003
    Publication date: March 18, 2004
    Inventors: Robert N. Webb, David Y. Chung, Andrew B. Donnalley, Michael E. McDonald, Kenneth W. Powers, Ralph Howard Schatz
  • Patent number: 6620898
    Abstract: The invention relates to a new improved catalyst to produce random copolymers of one or more iso-olefin monomers and one or more para-alkylstyrene monomers. The invention also relates to an improved continuous slurry polymerization process to produce random copolymers using the improved catalyst system. The process is carried out in an anhydrous polymerization system containing a mixture of the monomers in a polar solvent along with a Lewis acid and a stabilizing initiator.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: September 16, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert N. Webb, Kenneth W. Powers, Michael F. McDonald, Ralph Howard Schatz