Patents by Inventor Robert O. Brandt
Robert O. Brandt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10285418Abstract: A system for converting an irregular flow stream of solid particulates into a continuously flowing stream of solid particulates is disclosed. The system comprises a bin adapted to receive the irregular particulate flow stream. A level sensor is adapted to produce an output signal representative of the volume of particulates in the bin. The bin level controller has a set point corresponding to a desired level for the volume of particulates in the bin and is adapted to receive the output signal from the level sensor. The bin level controller produces a bin level control signal proportional to the deviation from the set point signal. A movable valve is positioned proximate the outlet adapted to modulate the particulate flow stream out of the bin and a valve controller is operatively associated with the valve. The valve controller is adapted to respond to bin level control signals from the bin level controller.Type: GrantFiled: January 13, 2016Date of Patent: May 14, 2019Inventor: Robert O Brandt, Jr.
-
Patent number: 10288473Abstract: A suspended hopper apparatus is adapted to dispense a flowable product. Three supports, a vessel, and a valve mechanism are provided. One of the three supports is a scale-support, and the other two supports are pivot-supports. A scale-support is a support which comprises a scale, wherein the scale is of a type which resists translation in only one direction, and does not resist translation in any lateral direction and wherein the direction is vertically-upward, and resists by providing upward support with respect to the vessel. The pivot-supports are supports which comprise pivots, the pivots resisting translation and are arranged to resist forces that are applied to the apparatus in the lateral direction. The pivots define a common axis of rotation, the axis extends in a horizontal direction and the pivots do not resist rotation about their axis. The vessel has centerline that is offset laterally from its axis and the product has a product centerline that is offset laterally from its axis.Type: GrantFiled: August 31, 2016Date of Patent: May 14, 2019Inventor: Robert O. Brandt, Jr.
-
Patent number: 10119853Abstract: An apparatus or method for weighing and/or measuring the flow rate of quantity of a particulate flowing out of a hopper wherein the hopper is isolated from the other components of the apparatus. The apparatus and method are adapted to generate a decoupling point boundary that demarcates the total amount of particulate in the hopper into portions that are not fully supported and portions that are fully supported by the hopper. The particulate is in continuous contact with itself from the inlet to the outlet, with the particulate contained between the isolated hopper and the rest of the components of the system by a flexible coupling or some other method of containment. The invention has the advantages of higher accuracy, decreased cost and complexity, and greater reliability than other solid particulate weighing systems of the prior art, particularly when dealing with low density particulates.Type: GrantFiled: April 14, 2016Date of Patent: November 6, 2018Inventor: Robert O Brandt, Jr.
-
Publication number: 20180058912Abstract: A suspended hopper apparatus is adapted to dispense a flowable product. Three supports, a vessel, and a valve mechanism are provided. One of the three supports is a scale-support, and the other two supports are pivot-supports. A scale-support is a support which comprises a scale, wherein the scale is of a type which resists translation in only one direction, and does not resist translation in any lateral direction and wherein the direction is vertically-upward, and resists by providing upward support with respect to the vessel. The pivot-supports are supports which comprise pivots, the pivots resisting translation and are arranged to resist forces that are applied to the apparatus in the lateral direction. The pivots define a common axis of rotation, the axis extends in a horizontal direction and the pivots do not resist rotation about their axis. The vessel has centerline that is offset laterally from its axis and the product has a product centerline that is offset laterally from its axis.Type: ApplicationFiled: August 31, 2016Publication date: March 1, 2018Inventor: Robert O. Brandt, JR.
-
Publication number: 20170299422Abstract: An apparatus or method for weighing and/or measuring the flow rate of quantity of a particulate flowing out of a hopper wherein the hopper is isolated from the other components of the apparatus. The apparatus and method are adapted to generate a decoupling point boundary that demarcates the total amount of particulate in the hopper into portions that are not fully supported and portions that are fully supported by the hopper. The particulate is in continuous contact with itself from the inlet to the outlet, with the particulate contained between the isolated hopper and the rest of the components of the system by a flexible coupling or some other method of containment. The invention has the advantages of higher accuracy, decreased cost and complexity, and greater reliability than other solid particulate weighing systems of the prior art, particularly when dealing with low density particulates.Type: ApplicationFiled: April 14, 2016Publication date: October 19, 2017Inventor: Robert O. Brandt, JR.
-
Publication number: 20170196239Abstract: A system for converting an irregular flow stream of solid particulates into a continuously flowing stream of solid particulates is disclosed. The system comprises a bin adapted to receive the irregular particulate flow stream. A level sensor is adapted to produce an output signal representative of the volume of particulates in the bin. The bin level controller has a set point corresponding to a desired level for the volume of particulates in the bin and is adapted to receive the output signal from the level sensor. The bin level controller produces a bin level control signal proportional to the deviation from the set point signal. A movable valve is positioned proximate the outlet adapted to modulate the particulate flow stream out of the bin and a valve controller is operatively associated with the valve. The valve controller is adapted to respond to bin level control signals from the bin level controller.Type: ApplicationFiled: January 13, 2016Publication date: July 13, 2017Inventor: Robert O. Brandt, JR.
-
Patent number: 8299374Abstract: A method and apparatus are described for accurately measuring the weight of a moving stream of particulate material at different flow volumes. The apparatus includes a dynamic measurement device with a deflectable curved pan for measuring the amount of material flowing along a pathway; a supply source for discharging material along the pathway; and a gate valve having an inclined gate member with a leading edge controlling the volume of material discharged from the supply source, the valve reducing the height of discharge of the material above the dynamic measurement device proportional to the increase in the flow volume of material being discharged. A gate valve is also described that includes a gate member with a fully open position and a fully closed position, the valve aperture being open a width determined by the bridging characteristics of the particulate material being discharged when the gate member is in the fully closed position.Type: GrantFiled: February 9, 2010Date of Patent: October 30, 2012Inventor: Robert O. Brandt
-
Patent number: 8235252Abstract: A high-speed actuator moves a valve stopper to a selected position to control material flow. The actuator includes a rod carrying first and second axially spaced solenoid armatures attached to the stopper. First and second solenoid coil surround and are spaced from the rod to bias the first solenoid armature along with the rod and valve stopper. A linear variable differential transformer (LVDT) responsive to the position of the second armature determines the instantaneous position of the valve stopper. A valve position control circuit receives a valve position set point from a user's input, and a valve position feedback signal from the LVDT. The valve position control circuit includes first and second solenoid coil drive signals that urge the first armature and stopper to the valve position set point. A signal generator circuit vibrates the valve about a set point to enhance material discharge.Type: GrantFiled: October 14, 2008Date of Patent: August 7, 2012Inventor: Robert O. Brandt, Jr.
-
Publication number: 20110192654Abstract: A method and apparatus are described for accurately measuring the weight of a moving stream of particulate material at different flow volumes. The apparatus includes a dynamic measurement device with a deflectable curved pan for measuring the amount of material flowing along a pathway; a supply source for discharging material along the pathway; and a gate valve having an inclined gate member with a leading edge controlling the volume of material discharged from the supply source, the valve reducing the height of discharge of the material above the dynamic measurement device proportional to the increase in the flow volume of material being discharged. A gate valve is also described that includes a gate member with a fully open position and a fully closed position, the valve aperture being open a width determined by the bridging characteristics of the particulate material being discharged when the gate member is in the fully closed position.Type: ApplicationFiled: February 9, 2010Publication date: August 11, 2011Inventor: Robert O. Brandt
-
Publication number: 20100090144Abstract: A high-speed actuator to move a valve stopper to a closed position against a valve seat and an open position away from the valve seat is disclosed. The actuator includes a rod carrying first and second axially spaced solenoid armatures. The rod also has a valve stopper connector end. A first solenoid coil surrounds and is spaced from the rod to bias the first solenoid armature along with the rod and valve stopper toward the valve's open position. A second solenoid surrounds and is spaced from the rod. The second solenoid is axially spaced from the first solenoid to bias the first armature towards the valve's closed position. A linear variable differential transformer (LVDT) magnetically coupled to the second solenoid armature is included to determine the instantaneous position of the valve stopper relative to the valve's seat. The LVDT is responsive to the position of the second armature. The LVDT generates an instantaneous valve position signal in concert with the movements of the rod.Type: ApplicationFiled: October 14, 2008Publication date: April 15, 2010Inventor: Robert O. Brandt, JR.
-
Patent number: 7320808Abstract: An improved coating apparatus and an improved method of coating a mass of centers are disclosed. The improved coating apparatus comprises a temperature sensor for measuring the temperature of the surface of the coated centers and/or a moisture sensor for measuring the moisture content of the surface of the coated centers. The improved method comprises drying coated centers by measuring the temperature of the surface of the coated centers in the mass using the temperature sensor and adjusting the temperature of the drying gas to maintain the surface temperature of the coated centers at a predetermined temperature and drying the coated centers until the moisture content of the surface of the coated centers is about 0 to about 30 percent water, by weight. Advantageously, the surface temperature and/or surface moisture measurements are conducted during the coating processing of the centers, while the centers are in the coating apparatus.Type: GrantFiled: September 10, 2003Date of Patent: January 22, 2008Assignee: Mars IncorporatedInventors: Jeffrey A. Banko, Kenneth S. Beasley, David H Reese, James D Erd, Robert O. Brandt, Jr., Malcolm A. Austin
-
Patent number: 7228750Abstract: A method and apparatus for fluid flow straightening and measurement introduces a high beta nozzle or venturi in-line with existing conduit. A fluid velocity measuring device is positioned in the throat of the high beta nozzle and measurements of velocity at multiple points in a plane perpendicular to the direction of fluid flow are taken. The velocity data points are then averaged and produce an output signal from which fluid flow rate can be determined.Type: GrantFiled: July 14, 2005Date of Patent: June 12, 2007Inventor: Robert O. Brandt, Jr.
-
Patent number: 6814108Abstract: Receptacles are precisely filled with particulate material by feeding the material from a supply source across a deflectable, curved weigh pan and discharging a continuous flow of material from the weigh pan along a pathway. Receptacles, which may be the final containers or intermediate receptacles, are continually fed by a conveyor into the pathway so that material flows into each receptacle opening. The amount of material flowing along the pathway is measured by deflection of the pan, and the speed of the receptacle conveyor is quickly adjusted responsive to the deflection of the pan, thereby controlling the time that a given receptacle is within the pathway and the precise amount of material placed into the receptacle. The amount of material flowing to the pan from the supply source can also be controlled responsive to the pan deflection.Type: GrantFiled: January 29, 2004Date of Patent: November 9, 2004Inventor: Robert O. Brandt, Jr.
-
Publication number: 20040109936Abstract: An improved coating apparatus and an improved method of coating a mass of centers are disclosed. The improved coating apparatus comprises a temperature sensor for measuring the temperature of the surface of the coated centers and/or a moisture sensor for measuring the moisture content of the surface of the coated centers. The improved method comprises drying coated centers by measuring the temperature of the surface of the coated centers in the mass using the temperature sensor and adjusting the temperature of the drying gas to maintain the surface temperature of the coated centers at a predetermined temperature and drying the coated centers until the moisture content of the surface of the coated centers is about 0 to about 30 percent water, by weight. Advantageously, the surface temperature and/or surface moisture measurements are conducted during the coating processing of the centers, while the centers are in the coating apparatus.Type: ApplicationFiled: September 10, 2003Publication date: June 10, 2004Applicant: MARS, INCORPORATEDInventors: Jeffrey A. Banko, Kenneth S. Beasley, David H. Reese, James D. Erd, Robert O. Brandt, Malcolm A. Austin
-
Publication number: 20040093958Abstract: The present invention is an apparatus for precisely dispensing a desired weight of a particulate material from the outlet of a material hopper. The apparatus is made up of a trap chamber for collecting an initial weight that is less than the desired weight of the particulate material. The trap chamber includes an upper surface with an inlet in communication with the hopper outlet and a lower surface including an outlet. The surface area of the inlet is smaller than the surface area of the trap chamber outlet. The invention also includes a dispensing valve having a closed position covering the trap chamber lower outlet opening and an open position uncovering the trap chamber lower outlet opening.Type: ApplicationFiled: November 14, 2002Publication date: May 20, 2004Inventor: Robert O. Brandt
-
Patent number: 6732597Abstract: The present invention is an apparatus for precisely dispensing a desired weight of a particulate material from the outlet of a material hopper. The apparatus is made up of a trap chamber for collecting an initial weight that is less than the desired weight of the particulate material. The trap chamber includes an upper surface with an inlet in communication with the hopper outlet and a lower surface including an outlet. The surface area of the inlet is smaller than the surface area of the trap chamber outlet. The invention also includes a dispensing valve having a closed position covering the trap chamber lower outlet opening and an open position uncovering the trap chamber lower outlet opening.Type: GrantFiled: November 14, 2002Date of Patent: May 11, 2004Inventor: Robert O. Brandt, Jr.
-
Publication number: 20040074313Abstract: A method and apparatus for fluid flow straightening and measurement introduces a high beta nozzle or venturi in-line with existing conduit. A fluid velocity measuring device is positioned in the throat of the high beta nozzle and measurements of velocity at multiple points in a plane perpendicular to the direction of fluid flow are taken. The velocity data points are then averaged and produce an output signal from which fluid flow rate can be determined.Type: ApplicationFiled: May 2, 2003Publication date: April 22, 2004Inventor: Robert O. Brandt
-
Patent number: 6679125Abstract: A flow meter for determining the flow rate or mass of a moving stream of fine particles comprises a guide means for guiding the material to be measured along a predetermined path having an entry end and an exit end. A transducer is operatively associated with one end of the guide means and includes a mechanical column connected between a load cell and the exit end of the guide means. The load cell produces an electrical output signal proportional to the flow rate of the material on the guide means. A means for vibrating the guide means is provided and serves to keep the flow stream moving and wherein the plane of vibration is perpendicular to the plane of measurement, thus eliminating measurement error due to the vibrational forces.Type: GrantFiled: November 10, 2000Date of Patent: January 20, 2004Inventor: Robert O. Brandt, Jr.
-
Patent number: 6640158Abstract: An apparatus for packaging solid particulate material is described that includes a deflectable, curved weigh pan with a given radius of curvature to receive a continuous flow of material and discharge the material along a first discharge pathway, the radius of curvature at the inlet end being substantially perpendicular to the feed pathway; a pivotal material flow diverter adjacent having an inlet end adjacent the pan outlet end, the diverter having a lowered position beneath the first discharge pathway, and a raised position intersecting the first discharge pathway; a transducer for continually measuring pan deflection; a controller to receive deflection measurements from the transducer and transmit an actuation signal when a target weight of material has crossed the pan; and an actuator to pivot the diverter between the first and second positions upon receipt of an actuation signal from the controller.Type: GrantFiled: March 27, 2002Date of Patent: October 28, 2003Inventor: Robert O. Brandt, Jr.
-
Patent number: 6638550Abstract: An improved coating apparatus and an improved method of coating a mass of centers are disclosed. The improved coating apparatus comprises a temperature sensor for measuring the temperature of the surface of the coated centers and/or a moisture sensor for measuring the moisture content of the surface of the coated centers. The improved method comprises drying coated centers by measuring the temperature of the surface of the coated centers in the mass using the temperature sensor and adjusting the temperature of the drying gas to maintain the surface temperature of the coated centers at a predetermined temperature and drying the coated centers until the moisture content of the surface of the coated centers is about 0% to about 30% water, by weight. Advantageously, the surface temperature and/or surface moisture measurements are conducted during the coating processing of the centers, while the centers are in the coating apparatus or during drying of the centers.Type: GrantFiled: March 21, 2000Date of Patent: October 28, 2003Assignee: Mars, Inc.Inventors: Jeffrey A. Banko, Kenneth S. Beasley, David H. Reese, James D. Erd, Robert O. Brandt, Jr., Malcolm A. Austin