Patents by Inventor Robert O. Williams

Robert O. Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180050084
    Abstract: Methods and composition for delivery of enzymes to a subject's airway. In some aspects, nebulized composition of enzymes, such as plasminogen activators are provided. In further aspects perfluorocarbon compositions comprising enzymes, such as plasminogen activators are provided. Compositions may, in some aspects, be used for the treatment of lung infections or acute lung injury, such as inhalational smoke induced acute lung injury (ISALI).
    Type: Application
    Filed: February 26, 2016
    Publication date: February 22, 2018
    Inventors: Robert O. WILLIAMS, III, Steven IDELL, Sreerama SHETTY
  • Publication number: 20170360711
    Abstract: The present invention includes compositions and methods for preparing micron-sized or submicron-sized particles by dissolving a water soluble effective ingredient in one or more solvents; spraying or dripping droplets solvent such that the effective ingredient is exposed to a vapor-liquid interface of less than 50, 100, 150, 200, 250, 200, 400 or 500 cm?1 area/volume to, e.g., increase protein stability; and contacting the droplet with a freezing surface that has a temperature differential of at least 30° C. between the droplet and the surface, wherein the surface freezes the droplet into a thin film with a thickness of less than 500 micrometers and a surface area to volume between 25 to 500 cm?1.
    Type: Application
    Filed: April 4, 2017
    Publication date: December 21, 2017
    Inventors: Keith P. Johnston, Joshua Engstrom, Robert O. Williams, III
  • Patent number: 9730894
    Abstract: A hot-melt extruded composition having finely divided drug-containing particles dispersed within a polymeric and/or lipophyllic carrier matrix is provided. The carrier softens or melts during hot-melt extrusion but it does not dissolve the drug-containing particles during extrusion. As a result, a majority or at least 90% wt. of the drug-containing particles in the extrudate are deaggregated during extrusion into essentially primary crystalline and/or amorphous particles. PEO is a suitable carrier material for drugs insoluble in the solid state in this carrier. Various functional excipients can be included in the carrier system to stabilize the particle size and physical state of the drug substance in either a crystalline and/or amorphous state. The carrier system is comprised of at least one thermal binder, and may also contain various functional excipients, such as: super-disintegrants, antioxidants, surfactants, wetting agents, stabilizing agents, retardants, or similar functional excipients.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: August 15, 2017
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Dave A. Miller, Jason T. McConville, James W. McGinity, Robert O. Williams, III
  • Patent number: 9724344
    Abstract: Inhalable compositions are described. The inhalable compositions comprise one or more respirable aggregates, the respirable aggregates comprising one or more poorly water soluble active agents, wherein at least one of the active agents reaches a maximum lung concentration (Cmax) of at least about 0.25 ?g/gram of lung tissue and remains at such concentration for a period of at least one hour after being delivered to the lung. Methods for making such compositions and methods for using such compositions are also disclosed.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: August 8, 2017
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: James E. Hitt, True L. Rogers, Brian D. Scherzer, Ian B. Gillespie, Paula C. Garcia, Nicholas S. Beck, Christopher J. Tucker, Timothy J. Young, David A. Hayes, Robert O. Williams, III, Keith P. Johnston, Jason T. McConville, Jay I. Peters, Robert Talbert, David S. Burgess
  • Publication number: 20170165238
    Abstract: The present invention includes compositions and methods for making and using a rapid dissolving, high potency, substantially amorphous nanostructured aggregate for pulmonary delivery of tacrolimus and a stabilizer matrix comprising, optionally, a polymeric or non-polymeric surfactant, a polymeric or non-polymeric saccharide or both, wherein the aggregate comprises a surface area greater than 5 m2/g as measured by BET analysis and exhibiting supersaturation for at least 0.5 hours when 11-15-times the aqueous crystalline solubility of tacrolimus is added to simulated lung fluid.
    Type: Application
    Filed: December 20, 2016
    Publication date: June 15, 2017
    Inventors: Robert O. WILLIAMS, III, Keith P. JOHNSTON, Prapasri SINSWAT, Jason T. MCCONVILLE, Robert TALBERT, Jay I. PETERS, Alan B. WATTS, True L. ROGERS
  • Publication number: 20170119669
    Abstract: A hot-melt extruded composition having finely divided drug-containing particles dispersed within a polymeric and/or lipophyllic carrier matrix is provided. The carrier softens or melts during hot-melt extrusion but it does not dissolve the drug-containing particles during extrusion. As a result, a majority or at least 90% wt. of the drug-containing particles in the extrudate are deaggregated during extrusion into essentially primary crystalline and/or amorphous particles. PEO is a suitable carrier material for drugs insoluble in the solid state in this carrier. Various functional excipients can be included in the carrier system to stabilize the particle size and physical state of the drug substance in either a crystalline and/or amorphous state. The carrier system is comprised of at least one thermal binder, and may also contain various functional excipients, such as: super-disintegrants, antioxidants, surfactants, wetting agents, stabilizing agents, retardants, or similar functional excipients.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 4, 2017
    Inventors: Dave A. MILLER, Jason T. McCONVILLE, James W. McGINITY, Robert O. WILLIAMS, III
  • Patent number: 9622974
    Abstract: The present invention includes compositions and methods for preparing micron-sized or submicron-sized particles by dissolving a water soluble effective ingredient in one or more solvents; spraying or dripping droplets solvent such that the effective ingredient is exposed to a vapor-liquid interface of less than 50, 100, 150, 200, 250, 200, 400 or 500 cm?1 area/volume to, e.g., increase protein stability; and contacting the droplet with a freezing surface that has a temperature differential of at least 30° C. between the droplet and the surface, wherein the surface freezes the droplet into a thin film with a thickness of less than 500 micrometers and a surface area to volume between 25 to 500 cm?1.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: April 18, 2017
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS
    Inventors: Keith P. Johnston, Joshua Engstrom, Robert O. Williams, III
  • Patent number: 9504658
    Abstract: A hot-melt extruded composition having finely divided drug-containing particles dispersed within a polymeric and/or lipophyllic carrier matrix is provided. The carrier softens or melts during hot-melt extrusion but it does not dissolve the drug-containing particles during extrusion. As a result, a majority or at least 90% wt. of the drug-containing particles in the extrudate are deaggregated during extrusion into essentially primary crystalline and/or amorphous particles. PEO is a suitable carrier material for drugs insoluble in the solid state in this carrier. Various functional excipients can be included in the carrier system to stabilize the particle size and physical state of the drug substance in either a crystalline and/or amorphous state. The carrier system is comprised of at least one thermal binder, and may also contain various functional excipients, such as: super-disintegrants, antioxidants, surfactants, wetting agents, stabilizing agents, retardants, or similar functional excipients.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: November 29, 2016
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Dave A. Miller, Jason T. McConville, James W. McGinity, Robert O. Williams, III
  • Publication number: 20160279209
    Abstract: Methods and composition for delivery of enzymes to a subject's airway. In some aspects, nebulized composition of enzymes, such as plasminogen activators are provided. In further aspects perfluorocarbon compositions comprising enzymes, such as plasminogen activators are provided. Compositions may, in some aspects, be used for the treatment of lung infections or acute lung injury, such as inhalational smoke induced acute lung injury (ISALI).
    Type: Application
    Filed: November 4, 2014
    Publication date: September 29, 2016
    Inventors: Robert O. WILLIAMS, III, Steven IDELL
  • Publication number: 20160250230
    Abstract: Compositions and methods for making a pharmaceutical dosage form include making a pharmaceutical composition that includes one or more active pharmaceutical ingredients (API) with one or more pharmaceutically acceptable excipients by thermokinetic compounding into a composite. Compositions and methods of preprocessing a composite comprising one or more APIs with one or more excipients include thermokinetic compounding, comprising thermokinetic processing the APIs with the excipients into a composite, wherein the composite can be further processed by conventional methods known in the art, such as hot melt extrusion, melt granulation, compression molding, tablet compression, capsule filling, film-coating, or injection molding.
    Type: Application
    Filed: May 13, 2016
    Publication date: September 1, 2016
    Applicants: BOARD OF REGENTS, THE UNIVERISTY OF TEXAS SYSTEM, DISPERSOL TECHNOLOGIES, LLC
    Inventors: Chris BROUGH, James W. MCGINITY, Dave A. MILLER, James C. DINUNZIO, Robert O. WILLIAMS, III
  • Publication number: 20160144023
    Abstract: Described herein are dry vaccine compositions and methods of freezing aluminum-containing vaccines such that when converted into a dried powder, the dry vaccine can be readily reconstituted to form a stable liquid vaccine without significant loss of activity.
    Type: Application
    Filed: November 13, 2015
    Publication date: May 26, 2016
    Inventors: Zhengrong Cui, Robert O. Williams, III, Xinran Li
  • Patent number: 9339440
    Abstract: Compositions and methods for making a pharmaceutical dosage form include making a pharmaceutical composition that includes one or more active pharmaceutical ingredients (API) with one or more pharmaceutically acceptable excipients by thermokinetic compounding into a composite. Compositions and methods of preprocessing a composite comprising one or more APIs with one or more excipients include thermokinetic compounding, comprising thermokinetic processing the APIs with the excipients into a composite, wherein the composite can be further processed by conventional methods known in the art, such as hot melt extrusion, melt granulation, compression molding, tablet compression, capsule filling, film-coating, or injection molding.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: May 17, 2016
    Assignees: Board of Regents, the University of Texas System, DisperSol Technologies, LLC
    Inventors: Chris Brough, James W. McGinity, Dave A. Miller, James C. DiNunzio, Robert O. Williams, III
  • Publication number: 20160113906
    Abstract: Compositions and methods of preparing amorphous drug formulations through hot melt extrusion which result in decreased decomposition of the desired drug are provided herein. Also provided are methods and compositions which further comprise a pharmaceutically acceptable thermoplastic polymer. In some embodiments, these compositions comprise a therapeutically active agent which is only sparingly soluble in water.
    Type: Application
    Filed: September 18, 2015
    Publication date: April 28, 2016
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Feng ZHANG, Abbe MILLER, Siyuan HUANG, Robert O. WILLIAMS, III
  • Publication number: 20150320740
    Abstract: Inhalable compositions are described. The inhalable compositions comprise one or more respirable aggregates, the respirable aggregates comprising one or more poorly water soluble active agents, wherein at least one of the active agents reaches a maximum lung concentration (Cmax) of at least about 0.25 ?g/gram of lung tissue and remains at such concentration for a period of at least one hour after being delivered to the lung. Methods for making such compositions and methods for using such compositions are also disclosed.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 12, 2015
    Inventors: James E. HITT, True L. ROGERS, Brian D. SCHERZER, Ian B. GILLESPIE, Paula C. GARCIA, Nicholas S. BECK, Christopher J. TUCKER, Timothy J. Young, David A. HAYES, Robert O. WILLIAMS, III, Keith P. JOHNSTON, Jason T. MCCONVILLE, Jay I. PETERS, Robert TALBERT, David S. BURGESS
  • Publication number: 20150224062
    Abstract: The present invention includes compositions and methods for making and using a rapid dissolving, high potency, substantially amorphous nanostructured aggregate for pulmonary delivery of tacrolimus and a stabilizer matrix comprising, optionally, a polymeric or non-polymeric surfactant, a polymeric or non-polymeric saccharide or both, wherein the aggregate comprises a surface area greater than 5 m2/g as measured by BET analysis and exhibiting supersaturation for at least 0.5 hours when 11-15-times the aqueous crystalline solubility of tacrolimus is added to simulated lung fluid.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 13, 2015
    Inventors: Robert O. WILLIAMS, III, Keith P. JOHNSTON, Prapasri SINSWAT, Jason T. MCCONVILLE, Robert TALBERT, Jay I. PETERS, Alan B. WATTS, True L. ROGERS
  • Publication number: 20150209289
    Abstract: The present invention includes compositions and methods for preparing micron-sized or submicron-sized particles by dissolving a water soluble effective ingredient in one or more solvents; spraying or dripping droplets solvent such that the effective ingredient is exposed to a vapor-liquid interface of less than 50, 100, 150, 200, 250, 200, 400 or 500 cm?1 area/volume to, e.g., increase protein stability; and contacting the droplet with a freezing surface that has a temperature differential of at least 30° C. between the droplet and the surface, wherein the surface freezes the droplet into a thin film with a thickness of less than 500 micrometers and a surface area to volume between 25 to 500 cm?1.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 30, 2015
    Inventors: Keith P. Johnston, Joshua Engstrom, Robert O. Williams, III
  • Patent number: 9061027
    Abstract: Inhalable compositions are described. The inhalable compositions comprise one or more respirable aggregates, the respirable aggregates comprising one or more poorly water soluble active agents, wherein at least one of the active agents reaches a maximum lung concentration (Cmax) of at least about 0.25 ?g/gram of lung tissue and remains at such concentration for a period of at least one hour after being delivered to the lung. Methods for making such compositions and methods for using such compositions are also disclosed.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: June 23, 2015
    Assignee: Board of Regents, the University of Texas System
    Inventors: James E. Hitt, True L. Rogers, Ian B. Gillespie, Brian D. Scherzer, Paula C. Garcia, Nicholas S. Beck, Christopher J. Tucker, Timothy J. Young, David A. Hayes, Robert O. Williams, III, Keith P. Johnston, Jason T. McConville, Jay I. Peters, Robert Talbert, David Burgess
  • Patent number: 9044391
    Abstract: The present invention includes compositions and methods for making and using a rapid dissolving, high potency, substantially amorphous nanostructured aggregate for pulmonary delivery of tacrolimus and a stabilizer matrix comprising, optionally, a polymeric or non-polymeric surfactant, a polymeric or non-polymeric saccharide or both, wherein the aggregate comprises a surface area greater than 5 m2/g as measured by BET analysis and exhibiting supersaturation for at least 0.5 hours when 11-15-times the aqueous crystalline solubility of tacrolimus is added to simulated lung fluid.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: June 2, 2015
    Assignee: Board of Regents, the University of Texas System
    Inventors: Robert O. Williams, Keith P. Johnston, Prapasri Sinswat, Jason T. McConville, Robert Talbert, Jay I. Peters, Alan B. Watts, True L. Rogers
  • Patent number: 8968786
    Abstract: The present invention includes compositions and methods for preparing micron-sized or submicron-sized particles by dissolving a water soluble effective ingredient in one or more solvents; spraying or dripping droplets solvent such that the effective ingredient is exposed to a vapor-liquid interface of less than 50, 100, 150, 200, 250, 200, 400 or 500 cm?1 area/volume to, e.g., increase protein stability; and contacting the droplet with a freezing surface that has a temperature differential of at least 30° C. between the droplet and the surface, wherein the surface freezes the droplet into a thin film with a thickness of less than 500 micrometers and a surface area to volume between 25 to 500 cm?1.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: March 3, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Keith P. Johnston, Joshua Engstrom, Robert O. Williams, III
  • Publication number: 20140039031
    Abstract: The present disclosure is directed to compositions and methods for formulating a pharmaceutical dosage form by forming a composition comprising acetyl-11-keto-?-boswellic acid, diindolylmethane, or curcumin with one or more pharmaceutically acceptable excipients for enhanced solubility to increase bioavailability and improve therapeutic efficacy. The composition can be processed by thermo-kinetic compounding along with conventional methods known in the art, such as hot melt extrusion, melt granulation, compression molding, tablet compression, capsule filling, film-coating, or injection molding.
    Type: Application
    Filed: February 23, 2012
    Publication date: February 6, 2014
    Applicants: Dispersol Technologies. LLC, Board of Regents, The University of Texas System
    Inventors: Chris Brough, Robert O. Williams, III, James W. McGinity, Dave A. Miller, Justin Hughey, Ryan Bennett