Patents by Inventor Robert Overell

Robert Overell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11707483
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instauces, micellic assemblies provided herein are pH sensitive particles.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: July 25, 2023
    Assignees: UNIVERSITY OF WASHINGTON, GENEVANT SCIENCES GMBH
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E. E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20200147121
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instances, micellic assemblies provided herein are pH sensitive particles.
    Type: Application
    Filed: September 23, 2019
    Publication date: May 14, 2020
    Applicants: University of Washington, GENEVANT SCIENCES GMBH
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E.E. Paschal, Charbel Diab, Priyadarsi De
  • Patent number: 10420790
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instauces, micellic assemblies provided herein are pH sensitive particles.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: September 24, 2019
    Assignees: University of Washington, GENEVANT SCIENCES GMBH
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E. E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20170239360
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instauces, micellic assemblies provided herein are pH sensitive particles.
    Type: Application
    Filed: April 27, 2017
    Publication date: August 24, 2017
    Applicants: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E.E. Paschal, Charbel Diab, Priyadarsi De
  • Patent number: 9662403
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instances, micellic assemblies provided herein are pH sensitive particles.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: May 30, 2017
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E. E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20160250338
    Abstract: Provided herein are micellic assemblies comprising a plurality of copolymers. In certain instances, micellic assemblies provided herein are pH sensitive particles.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 1, 2016
    Applicants: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E.E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20160082121
    Abstract: A composition for delivering an agent to a cell, comprising a bispecific affinity reagent and a pH-responsive, membrane destabilizing polymer. The bispecific affinity reagent may include a first affinity reagent covalently linked to a second affinity reagent, wherein the first affinity reagent binds to a molecule on the surface of a cell, and the second affinity reagent binds to an intracellular target.
    Type: Application
    Filed: December 2, 2015
    Publication date: March 24, 2016
    Applicants: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Robert Overell, Paul Johnson
  • Patent number: 9220791
    Abstract: A composition for delivering an agent to a cell, comprising a bispecific affinity reagent and a pH-responsive, membrane destabilizing polymer. The bispecific affinity reagent may include a first affinity reagent covalently linked to a second affinity reagent, wherein the first affinity reagent binds to a molecule on the surface of a cell, and the second affinity reagent binds to an intracellular target.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: December 29, 2015
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Robert Overell, Paul Johnson
  • Patent number: 9211250
    Abstract: Compositions comprising a heterogeneous polymeric micelle and an agent (e.g., a polynucleotide) associated with the micelle are disclosed, together with methods for intracellular delivery of such agent.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: December 15, 2015
    Assignees: University of Washington, PhaseRx, Inc.
    Inventors: Paul Johnson, Patrick S. Stayton, Allan S. Hoffman, Robert Overell, Anna Gall, Mary Prieve, Amber Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20150238619
    Abstract: Provided herein are polymeric carriers suitable for the delivery of polynucleotides (e.g., oligonucleotides) and/or other therapeutic agents into a living cell.
    Type: Application
    Filed: February 24, 2015
    Publication date: August 27, 2015
    Applicants: PHASERX, INC., UNIVERSITY OF WASHINGTON
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony J. Convertine, Craig L. Duvall, Danielle Benoit, Robert Overell, Paul H. Johnson, Anna S. Gall, Mary G. Prieve, Amber E.E. Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20140228516
    Abstract: A composition for delivering an agent to a cell, comprising a bispecific affinity reagent and a pH-responsive, membrane destabilizing polymer. The bispecific affinity reagent may include a first affinity reagent covalently linked to a second affinity reagent, wherein the first affinity reagent binds to a molecule on the surface of a cell, and the second affinity reagent binds to an intracellular target.
    Type: Application
    Filed: February 5, 2014
    Publication date: August 14, 2014
    Applicants: PHASERX, INC., UNIVERSITY OF WASHINGTON
    Inventors: Patrick S. Stayton, Allan S. Hoffman, Anthony Convertine, Craig L. Duvall, Robert Overell, Paul Johnson
  • Publication number: 20120021514
    Abstract: Compositions comprising a heterogeneous polymeric micelle and an agent (e.g., a polynucleotide) associated with the micelle are disclosed, together with methods for intracellular delivery of such agent.
    Type: Application
    Filed: May 13, 2009
    Publication date: January 26, 2012
    Applicants: PHASERX, INC., UNIVERSITY OF WASHINGTON
    Inventors: Paul Johnson, Patrick S. Stayton, Allan S. Hoffman, Robert Overell, Anna Gall, Mary Prieve, Amber Paschal, Charbel Diab, Priyadarsi De
  • Publication number: 20110281934
    Abstract: Provided herein are micelles comprising a plurality of copolymers. In certain instances, micelles provided herein are pH sensitive particles.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 17, 2011
    Applicants: PHASERX, INC., UNIVERSITY OF WASHINGTON
    Inventors: Paul Johnson, Patrick S. Stayton, Allan S. Hoffman, Robert Overell, Anna Gall, Mary Prieve, Amber Paschal, Charbel Diab, Priyadarsi De
  • Patent number: 5736387
    Abstract: The invention provides retroviral vectors which can be used for directing gene delivery to a specific sub-population of mammalian cells. The vectors comprise chimeric targeting proteins which specifically alter the host range of the vector. The chimeric targeting proteins contain a ligand moiety which is capable of binding to receptors present on target cells, and an uptake moiety which is capable of promoting entry of the vector into the target cell. The ligand moiety is derived from a cytokine that acts upon the target cells of interest, and the uptake moiety is derived from a retroviral envelope protein.
    Type: Grant
    Filed: June 1, 1994
    Date of Patent: April 7, 1998
    Assignee: Targeted Genetics Corporation
    Inventors: Ralph W. Paul, Robert Overell