Patents by Inventor Robert P. Dillon

Robert P. Dillon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11434921
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: September 6, 2022
    Assignees: TC1 LLC, The Penn State Research Foundation
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Patent number: 11428236
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: August 30, 2022
    Assignees: TC1 LLC, THE PENN STATE RESEARCH FOUNDATION
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Publication number: 20220266338
    Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe-Co alloy material (e.g., the Fe-Co-V alloy Hiperco-50(R)). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 25, 2022
    Applicant: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
  • Patent number: 11424641
    Abstract: A flexible load management (FLM) system and technique adaptively monitors and manages power consumption of a premises. The FLM system includes a virtual critical load panel (vCLP) that utilizes circuit breakers in combination with companion modules (i.e., intelligent controllers) to vary a prioritization arrangement of loads in the premises by time of day, season or even dynamically. The vCLP is a prioritized enumeration (i.e., prioritization) of the loads within the premises, wherein the loads are considered sufficiently important such that they are protected by a local power source. The vCLP is dynamically configurable by a user in real time according to an instantaneous demand for the prioritized loads that is used to determine a number of branch circuits associated with the loads that is able to be powered-on at any time.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: August 23, 2022
    Assignee: Savant Systems, Inc.
    Inventors: Robert P. Madonna, William H. Dillon, Daniel H. Chapman, Anna E. Demeo, Alex Wiggins, Nicole Madonna
  • Publication number: 20220203442
    Abstract: Systems and methods of additively manufacturing multi-material electromagnetic shields are described. Additive manufacturing processes use co-deposition to incorporate multiple materials and/or microstructures selected to achieve specified shield magnetic properties. Geometrically complex shields can be manufactured with alternating shielding materials optimized for the end use application. The microstructures of the printed shields can be tuned by optimizing the print parameters.
    Type: Application
    Filed: August 5, 2021
    Publication date: June 30, 2022
    Applicant: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Nicholas E. Ury, Katherine Dang, Joshua Berman, Pablo Narvaez, Vilupanur A. Ravi, John Paul Castelo Borgonia, Joelle T. Cooperrider, Bryan W. McEnerney, Andrew A. Shapiro-Scharlotta
  • Patent number: 11351613
    Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe—Co alloy material (e.g., the Fe—Co—V alloy Hiperco-50®). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: June 7, 2022
    Assignee: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
  • Publication number: 20200278017
    Abstract: Harmonic drives are used widely in robotics as a method for achieving high gear reductions and for driving force transmissions. The harmonic drive is made a three components: a wave generator, a flexspline, and a circular spline. Embodiments described flexsplines for a metal strain wave gearing. The cup of the flexspline is free from sharp edges and with a rounded bottom with a curvature maximized based on the geometry of the flexspline. Compared to a steel flexspline, implementations of flexsplines will have the same outer diameter, the same number of teeth and profile, the same input shaft/base, the same wall thickness near the teeth, but comprise a rounded bottom where the input shaft/base transitions to the straight wall of the flexspline, providing improved performance of BMG flexsplines by reducing low cycle fatigue failures due to stress concentrations.
    Type: Application
    Filed: February 26, 2020
    Publication date: September 3, 2020
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, Robert P. Dillon, Scott N. Roberts
  • Publication number: 20190366435
    Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe—Co alloy material (e.g., the Fe—Co—V alloy Hiperco-50®). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.
    Type: Application
    Filed: June 3, 2019
    Publication date: December 5, 2019
    Applicant: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
  • Patent number: 9101979
    Abstract: Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: August 11, 2015
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, John Paul C. Borgonia, Robert P. Dillon, Eric J. Suh, Jerry L. Mulder, Paul B. Gardner