Patents by Inventor Robert P. Dillon
Robert P. Dillon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12078153Abstract: Systems and methods for embedding a thermal management system in an electric propulsion (EP) system is presented. According to one aspect, one or more oscillating heat pipes (OHPs) are provided within functional elements of the EP system. Each OHP includes channel segments that include a sealed working fluid. The channel segments are joined to form a continuous serpentine channel with a channel path that alternates between hot and cold regions of the EP system. According to another aspect, the functional elements of the EP system are reduced to a single monolithic structure with an embedded OHP. The single monolithic structure may be a single material or a multi material. According to yet another aspect, the functional elements are elements of a magnetic circuit of the EP system, including one or more of a backplate, an outer pole, an inner pole, or a center pole.Type: GrantFiled: April 14, 2022Date of Patent: September 3, 2024Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Scott N Roberts, Sean W Reilly, Robert P Dillon, Benjamin I Furst, Dan M Goebel
-
Patent number: 11920225Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe-Co alloy material (e.g., the Fe-Co-V alloy Hiperco-50(R)). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.Type: GrantFiled: May 9, 2022Date of Patent: March 5, 2024Assignee: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
-
Patent number: 11859705Abstract: Harmonic drives are used widely in robotics as a method for achieving high gear reductions and for driving force transmissions. The harmonic drive is made a three components: a wave generator, a flexspline, and a circular spline. Embodiments described flexsplines for a metal strain wave gearing. The cup of the flexspline is free from sharp edges and with a rounded bottom with a curvature maximized based on the geometry of the flexspline. Compared to a steel flexspline, implementations of flexsplines will have the same outer diameter, the same number of teeth and profile, the same input shaft/base, the same wall thickness near the teeth, but comprise a rounded bottom where the input shaft/base transitions to the straight wall of the flexspline, providing improved performance of BMG flexsplines by reducing low cycle fatigue failures due to stress concentrations.Type: GrantFiled: February 26, 2020Date of Patent: January 2, 2024Assignee: California Institute of TechnologyInventors: Douglas C. Hofmann, Robert P. Dillon, Scott N. Roberts
-
Patent number: 11731196Abstract: Systems and methods of additively manufacturing multi-material electromagnetic shields are described. Additive manufacturing processes use co-deposition to incorporate multiple materials and/or microstructures selected to achieve specified shield magnetic properties. Geometrically complex shields can be manufactured with alternating shielding materials optimized for the end use application. The microstructures of the printed shields can be tuned by optimizing the print parameters.Type: GrantFiled: August 5, 2021Date of Patent: August 22, 2023Assignee: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Nicholas E. Ury, Katherine Dang, Joshua Berman, Pablo Narvaez, Vilupanur A. Ravi, John Paul Castelo Borgonia, Joelle T. Cooperrider, Bryan W. McEnerney, Andrew A. Shapiro-Scharlotta
-
Publication number: 20230003202Abstract: Systems and methods for embedding a thermal management system in an electric propulsion (EP) system is presented. According to one aspect, one or more oscillating heat pipes (OHPs) are provided within functional elements of the EP system. Each OHP includes channel segments that include a sealed working fluid. The channel segments are joined to form a continuous serpentine channel with a channel path that alternates between hot and cold regions of the EP system. According to another aspect, the functional elements of the EP system are reduced to a single monolithic structure with an embedded OHP. The single monolithic structure may be a single material or a multi material. According to yet another aspect, the functional elements are elements of a magnetic circuit of the EP system, including one or more of a backplate, an outer pole, an inner pole, or a center pole.Type: ApplicationFiled: April 14, 2022Publication date: January 5, 2023Inventors: Scott N. ROBERTS, Sean W. REILLY, Robert P. DILLON, Benjamin I. FURST, Dan M. GOEBEL
-
Publication number: 20220266338Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe-Co alloy material (e.g., the Fe-Co-V alloy Hiperco-50(R)). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.Type: ApplicationFiled: May 9, 2022Publication date: August 25, 2022Applicant: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
-
Publication number: 20220203442Abstract: Systems and methods of additively manufacturing multi-material electromagnetic shields are described. Additive manufacturing processes use co-deposition to incorporate multiple materials and/or microstructures selected to achieve specified shield magnetic properties. Geometrically complex shields can be manufactured with alternating shielding materials optimized for the end use application. The microstructures of the printed shields can be tuned by optimizing the print parameters.Type: ApplicationFiled: August 5, 2021Publication date: June 30, 2022Applicant: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Nicholas E. Ury, Katherine Dang, Joshua Berman, Pablo Narvaez, Vilupanur A. Ravi, John Paul Castelo Borgonia, Joelle T. Cooperrider, Bryan W. McEnerney, Andrew A. Shapiro-Scharlotta
-
Patent number: 11351613Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe—Co alloy material (e.g., the Fe—Co—V alloy Hiperco-50®). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.Type: GrantFiled: June 3, 2019Date of Patent: June 7, 2022Assignee: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
-
Publication number: 20200278017Abstract: Harmonic drives are used widely in robotics as a method for achieving high gear reductions and for driving force transmissions. The harmonic drive is made a three components: a wave generator, a flexspline, and a circular spline. Embodiments described flexsplines for a metal strain wave gearing. The cup of the flexspline is free from sharp edges and with a rounded bottom with a curvature maximized based on the geometry of the flexspline. Compared to a steel flexspline, implementations of flexsplines will have the same outer diameter, the same number of teeth and profile, the same input shaft/base, the same wall thickness near the teeth, but comprise a rounded bottom where the input shaft/base transitions to the straight wall of the flexspline, providing improved performance of BMG flexsplines by reducing low cycle fatigue failures due to stress concentrations.Type: ApplicationFiled: February 26, 2020Publication date: September 3, 2020Applicant: California Institute of TechnologyInventors: Douglas C. Hofmann, Robert P. Dillon, Scott N. Roberts
-
Publication number: 20190366435Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe—Co alloy material (e.g., the Fe—Co—V alloy Hiperco-50®). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.Type: ApplicationFiled: June 3, 2019Publication date: December 5, 2019Applicant: California Institute of TechnologyInventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
-
Patent number: 9101979Abstract: Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.Type: GrantFiled: October 30, 2012Date of Patent: August 11, 2015Assignee: California Institute of TechnologyInventors: Douglas C. Hofmann, John Paul C. Borgonia, Robert P. Dillon, Eric J. Suh, Jerry L. Mulder, Paul B. Gardner