Patents by Inventor Robert P. Mandal

Robert P. Mandal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020127334
    Abstract: A method of and an apparatus for coating a substrate with a polymer solution to produce a film of uniform thickness, includes mounting the substrate inside an enclosed housing and passing a control gas, which may be a solvent vapor-bearing gas into the housing through an inlet. The polymer solution is deposited onto the surface of the substrate in the housing and the substrate is then spun. The control gas and any solvent vapor and particulate contaminants suspended in the control gas are exhausted from the housing through an outlet and the solvent vapor concentration is controlled by controlling the temperature of the housing and the solvent from which the solvent vapor-bearing gas is produced. Instead the concentration can be controlled by mixing gases having different solvent concentrations. The humidity of the gas may also be controlled.
    Type: Application
    Filed: June 30, 2001
    Publication date: September 12, 2002
    Inventors: Emir Gurer, Tom Zhong, John Lewellen, Edward C. Lee, Robert P. Mandal, James C. Grambow, Ted C. Bettes, Donald R. Sauer, Edmond R. Ward
  • Publication number: 20020098283
    Abstract: A method of and an apparatus for coating a substrate with a polymer solution to produce a film of uniform thickness, includes mounting the substrate inside an enclosed housing and passing a control gas, which may be a solvent vapor-bearing gas into the housing through an inlet. The polymer solution is deposited onto the surface of the substrate in the housing and the substrate is then spun. The control gas and any solvent vapor and particulate contaminants suspended in the control gas are exhausted from the housing through an outlet and the solvent vapor concentration is controlled by controlling the temperature of the housing and the solvent from which the solvent vapor-bearing gas is produced. Instead the concentration can be controlled by mixing gases having different solvent concentrations. The humidity of the gas may also be controlled.
    Type: Application
    Filed: June 30, 2001
    Publication date: July 25, 2002
    Inventors: Emir Gurer, Tom Zhong, John Lewellen, Edward C. Lee, Robert P. Mandal, James C. Grambow, Ted C. Dettes, Donald R. Sauer, Edmond R. Ward, Jung-Hoon Chun, Sangjun Han
  • Publication number: 20020045361
    Abstract: A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10 W to about 200 W or a pulsed RF power level from about 20 W to about 500 W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers.
    Type: Application
    Filed: September 19, 2001
    Publication date: April 18, 2002
    Applicant: Applied Materials, Inc.
    Inventors: David Cheung, Wai-Fan Yau, Robert P. Mandal, Shin-Puu Jeng, Kuo-Wei Liu, Yung-Cheng Lu, Michael Barnes, Ralf B. Willecke, Farhad Moghadam, Tetsuya Ishikawa, Tze Wing Poon
  • Publication number: 20020042210
    Abstract: A process for depositing porous silicon oxide-based films using a sol-gel approach utilizing a precursor solution formulation which includes a purified nonionic surfactant and an additive among other components, where the additive is either an ionic additive or an amine additive which forms an ionic ammonium type salt in the acidic precursor solution. Using this precursor solution formulation enables formation of a film having a dielectric constant less than 2.5, appropriate mechanical properties, and minimal levels of alkali metal impurities. In one embodiment, this is achieved by purifying the surfactant and adding ionic or amine additives such as tetraalkylammonium salts and amines to the stock precursor solution.
    Type: Application
    Filed: March 29, 2001
    Publication date: April 11, 2002
    Inventors: Robert P. Mandal, Alexandros T. Demos, Timothy Weidman, Michael P. Nault, Nikolaos Bekiaris, Scott J. Weigel, Lee A. Senecal, James E. MacDougall, Hareesh Thridandam
  • Patent number: 6362115
    Abstract: A method and apparatus for forming thin polymer layers having low dielectric constants on semiconductor substrates includes in situ formation of p-xylylenes, or derivatives thereof from liquid precursors such as p-xylene, 1,4-bis(formatomethyl)benzene, or 1,4-bis(N-methyl-aminomethyl)benzene. In one embodiment, the method includes the vaporization of p-xylene, dehydrogenation of the p-xylene in a platinum lined tube to form p-xylylene with minimum formation of side reaction products, and blending of the p-xylylene monomers with one or more comonomers.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: March 26, 2002
    Assignee: Applied Materials, Inc.
    Inventor: Robert P. Mandal
  • Patent number: 6348725
    Abstract: A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10 W to about 200 W or a pulsed RF power level from about 20 W to about 500 W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: February 19, 2002
    Assignee: Applied Materials, Inc.
    Inventors: David Cheung, Wai-Fan Yau, Robert P. Mandal, Shin-Puu Jeng, Kuo-Wei Liu, Yung-Cheng Lu, Michael Barnes, Ralf B. Willecke, Farhad Moghadam, Tetsuya Ishikawa, Tze Wing Poon
  • Publication number: 20020004100
    Abstract: A method of and an apparatus for coating a substrate with a polymer solution to produce a film of uniform thickness, includes mounting the substrate inside an enclosed housing and passing a control gas, which may be a solvent vapor-bearing gas into the housing through an inlet. The polymer solution is deposited onto the surface of the substrate in the housing and the substrate is then spun. The control gas and any solvent vapor and particulate contaminants suspended in the control gas are exhausted from the housing through an outlet and the solvent vapor concentration is controlled by controlling the temperature of the housing and the solvent from which the solvent vapor-bearing gas is produced. Instead the concentration can be controlled by mixing gases having different solvent concentrations. The humidity of the gas may also be controlled.
    Type: Application
    Filed: February 28, 2001
    Publication date: January 10, 2002
    Inventors: Emir Gurer, Tom Zhong, John Lewellen, Ed Lee, Robert P. Mandal, James C. Grambow, Ted C. Bettes, Donald R. Sauer, Edmond R. Ward
  • Patent number: 6303523
    Abstract: A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10 W to about 200 W or a pulsed RF power level from about 20 W to about 500 W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: October 16, 2001
    Assignee: Applied Materials, Inc.
    Inventors: David Cheung, Wai-Fan Yau, Robert P. Mandal, Shin-Puu Jeng, Kuo-Wei Liu, Yung-Cheng Lu, Michael Barnes, Ralf B. Willecke, Farhad Moghadam, Tetsuya Ishikawa, Tze Wing Poon
  • Publication number: 20010005546
    Abstract: A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10W to about 200W or a pulsed RF power level from about 20W to about 500W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers.
    Type: Application
    Filed: February 10, 1999
    Publication date: June 28, 2001
    Applicant: Applied Materials, Inc.
    Inventors: DAVID CHEUNG, WAI-FAN YAU, ROBERT P. MANDAL, SHIN-PUU JENG, KUO-WEI LIU, YUNG-CHENG LU, MIKE BARNES, RALF B. WILLECKE, FARHAD MOGHADAM, TETSUYA ISHIKAWA, TZE POON
  • Publication number: 20010004479
    Abstract: A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10W to about 200W or a pulsed RF power level from about 20W to about 500W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers.
    Type: Application
    Filed: November 4, 1998
    Publication date: June 21, 2001
    Inventors: DAVID CHEUNG, WAI-FAN YAU, ROBERT P. MANDAL, SHIN-PUU JENG, KUOWEI LIU, YUNG-CHENG LU, MIKE BARNES, RALF B. WILLECKE, FARHAD MOGHADAM, TETSUYA ISHIKOWA, TZE POON
  • Patent number: 6238735
    Abstract: A method of and an apparatus for coating a substrate with a polymer solution to produce a film of uniform thickness, includes mounting the substrate inside an enclosed housing and passing a control gas, which may be a solvent vapor-bearing gas into the housing through an inlet. The polymer solution is deposited onto the surface of the substrate in the housing and the substrate is then spun. The control gas and any solvent vapor and particulate contaminants suspended in the control gas are exhausted from the housing through an outlet and the solvent vapor concentration is controlled by controlling the temperature of the housing and the solvent from which the solvent vapor-bearing gas is produced. Instead the concentration can be controlled by mixing gases having different solvent concentrations. The humidity of the gas may also be controlled.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: May 29, 2001
    Assignee: Silicon Valley Group, Inc.
    Inventors: Robert P. Mandal, James C. Grambow, Ted C. Dettes, Donald R. Sauer, Emir Gurer, Edmond R. Ward
  • Patent number: 6171945
    Abstract: A method and apparatus for depositing nano-porous low dielectric constant films by reaction of a silicon hydride containing compound or mixture optionally having thermally labile organic groups with a peroxide compound on the surface of a substrate. The deposited silicon oxide based film is annealed to form dispersed microscopic voids that remain in a nano-porous silicon oxide based film having a foam structure. The nano-porous silicon oxide based films are useful for filling gaps between metal lines with or without liner or cap layers. The nano-porous silicon oxide based films may also be used as an intermetal dielectric layer for fabricating dual damascene structures. Preferred nano-porous silicon oxide based films are produced by reaction of 1,3,5-trisilanacyclohexane, bis(formyloxysilano)methane, or bis(glyoxylylsilano)methane and hydrogen peroxide followed by a cure/anneal that includes a gradual increase in temperature.
    Type: Grant
    Filed: October 22, 1998
    Date of Patent: January 9, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Robert P. Mandal, David Cheung, Wai-Fan Yau
  • Patent number: 6107184
    Abstract: A method and apparatus for forming thin copolymer layers having low dielectric constants on semiconductor substrates includes in situ formation of p-xylylenes, or derivatives thereof, from solid or liquid precursors such as cyclic p-xylylene dimer, p-xylene, 1,4-bis(formatomethyl)benzene, or 1,4-bis(N-methyl-aminomethyl)benzene. P-xylylene is copolymerized with a comonomer having labile groups that are converted to dispersed gas bubbles after the copolymer layer is deposited on the substrate. Preferred comonomers comprise diazocyclopentadienyl, diazoquinoyl, formyloxy, or glyoxyloyloxy groups.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: August 22, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Robert P. Mandal, David Cheung, Peter Wai-Man Lee, Chi-I Lang
  • Patent number: 6013315
    Abstract: A dispense nozzle (10), having a narrow oblong orifice (14), is positioned over and near the surface of the substrate (22), close to the edge of the substrate. While the substrate is rotating, the nozzle dispenses fluid through the narrow oblong orifice onto the substrate surface, starting from near the outer edge (24) moving toward the substrate's rotational center (26). The narrow oblong orifice may have lips of unequal size to help direct fluid flow. A controlled rate of acceleration is maintained for the rate of translation of the nozzle across the substrate surface. Once the nozzle approaches the substrate's rotational center, the nozzle is raised to a higher height above the surface of the substrate while continuing to dispense fluid. Then the dispense stream of fluid is terminated, and the substrate is rapidly accelerated to a predetermined spin speed to evenly distribute the fluid over the surface of the substrate to a uniform film of desired thickness.
    Type: Grant
    Filed: January 22, 1998
    Date of Patent: January 11, 2000
    Assignee: Applied Materials, Inc.
    Inventor: Robert P. Mandal
  • Patent number: 5954878
    Abstract: A method of and an apparatus for coating a substrate with a polymer solution to produce a film of uniform thickness, includes mounting the substrate inside an enclosed housing and passing a control gas, which may be a solvent vapor-bearing gas into the housing through an inlet. The polymer solution is deposited onto the surface of the substrate in the housing and the substrate is then spun. The control gas and any solvent vapour and particulate contaminants suspended in the control gas are exhausted from the housing through an outlet and the solvent vapor concentration is controlled by controlling the temperature of the housing and the solvent from which the solvent vapor-bearing gas is produced. Instead the concentration can be controlled by mixing gases having different solvent concentrations. The humidity of the gas may also be controlled.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: September 21, 1999
    Assignee: Silicon Valley Group, Inc.
    Inventors: Robert P. Mandal, James C. Grambow, Ted C. Bettes, Donald R. Sauer, Emir Guegrer, Edmond R. Ward
  • Patent number: 5670210
    Abstract: A method of and an apparatus for coating a substrate with a polymer solution to produce a film of uniform thickness, includes mounting the substrate inside an enclosed housing and passing a control gas, which may be a solvent vapor-bearing gas into the housing through an inlet. The polymer solution is deposited onto the surface of the substrate in the housing and the substrate is then spun. The control gas and any solvent vapour and particulate contaminants suspended in the control gas are exhausted from the housing through an outlet and the solvent vapor concentration is controlled by controlling the temperature of the housing and the solvent from which the solvent vapor-bearing gas is produced. Instead the concentration can be controlled by mixing gases having different solvent concentrations. The humidity of the gas may also be controlled.
    Type: Grant
    Filed: December 1, 1995
    Date of Patent: September 23, 1997
    Assignee: Silicon Valley Group, Inc.
    Inventors: Robert P. Mandal, James C. Grambow, Ted C. Bettes, Donald R. Sauer, Emir Gurer, Edmond R. Ward
  • Patent number: 3986255
    Abstract: Gold alloy bumps are built up upon conductive pads formed upon electronic chips. The bumps are thereafter aligned with conductive portions of a generally larger substrate to which the chips are to be electrically connected. The bumps are produced by either vacuum evaporating or plating metallic layers over the conductive chip pad areas wherein certain layers within the bumps are formed of magnetic metals such as cobalt or nickel cobalt alloys. Metallic layers of gold and alloying metal are evaporated or plated over the deposited magnetic metals to complete the formation of the bumps. The chips are thereafter subjected to a sufficient amount of heat to cause the bumps to flow, thereby to form a reliable electrical connection between the chips and the substrate. The magnetic materials formed within the bumps result in ease of transporting and manipulating the chips for further processing by means of magnetic plates or other pickup devices.
    Type: Grant
    Filed: November 29, 1974
    Date of Patent: October 19, 1976
    Assignee: Itek Corporation
    Inventor: Robert P. Mandal