Patents by Inventor Robert P. Sullivan
Robert P. Sullivan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10900699Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.Type: GrantFiled: October 29, 2018Date of Patent: January 26, 2021Assignee: Edwards Vacuum LLCInventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, Jr., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
-
Patent number: 10760562Abstract: A cryopump includes a refrigerator with at least first and second stages. A radiation shield surrounds the second stage and is in thermal contact with the first stage. The radiation shield includes a drain hole to permit cryogenic fluid to traverse through the drain hole during regeneration. The cryopump also includes a primary pumping surface supporting adsorbent in thermal contact with the second stage. The second stage array assembly includes a primary condensing surface, protected surfaces having adsorbent, and non-primary condensing surfaces. A baffle is disposed over the drain hole. The baffle redirects gas from an annular space disposed between the radiation shield and the vacuum vessel that attempts to traverse through the drain hole to prevent the gas from condensing on a non-primary condensing surface. The baffle directs gas to condense on the primary condensing surface.Type: GrantFiled: January 15, 2008Date of Patent: September 1, 2020Assignee: Edwards Vacuum LLCInventors: Allen J. Bartlett, Michael A. Driscoll, Michael J. Eacobacci, Jr., William L. Johnson, Robert P. Sullivan, Sergei Syssoev, Mark A. Stira, John J. Casello
-
Patent number: 10381251Abstract: An overhead hoist transport vehicle comprising: an overhead hoist; a translating stage; and a gripper coupled to the translating stage, the gripper being configured to grip a material unit; wherein the overhead hoist is configured to transport the material unit to one of a load port and a storage location by performing operations comprising: the overhead hoist being configured to vertically move the gripper to the load port and the storage location; and the translating stage being configured to horizontally move the overhead hoist to the load port and the storage location; and wherein the load port is beneath an overhead rail; and wherein at least a portion of the storage location is disposed lateral to the overhead rail.Type: GrantFiled: June 8, 2012Date of Patent: August 13, 2019Assignee: Murata Machinery Ltd.Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
-
Publication number: 20190063807Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.Type: ApplicationFiled: October 29, 2018Publication date: February 28, 2019Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, JR., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
-
Patent number: 10147627Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.Type: GrantFiled: November 14, 2013Date of Patent: December 4, 2018Assignee: Murata Machinery Ltd.Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
-
Patent number: 10141212Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.Type: GrantFiled: June 30, 2015Date of Patent: November 27, 2018Assignee: Murata Machinery Ltd.Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
-
Patent number: 10113781Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.Type: GrantFiled: March 5, 2012Date of Patent: October 30, 2018Assignee: Brooks Automation, Inc.Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, Jr., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
-
Patent number: 9881823Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route.Type: GrantFiled: June 30, 2015Date of Patent: January 30, 2018Assignee: Murata Machinery Ltd.Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
-
Patent number: 9620397Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.Type: GrantFiled: June 30, 2015Date of Patent: April 11, 2017Assignee: Murata Machinery Ltd.Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
-
Publication number: 20160069339Abstract: Cryopump components are improved using thin layer heating elements for temperature control or to serve as heaters. These heating elements may be located and prevent pooling during regeneration. The temperature control may also be achieved through the use of ceramic heating elements. The ceramic heating elements may also include a second function of structural support within the cryopump. Temperature control may further be achieved via the radiation shield, where the radiation shield includes a clad sheeting or coating.Type: ApplicationFiled: September 11, 2015Publication date: March 10, 2016Inventors: Doreen J. Ball-DiFazio, William L. Johnson, Ronald N. Morris, Robert P. Sullivan
-
Publication number: 20150303087Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.Type: ApplicationFiled: June 30, 2015Publication date: October 22, 2015Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
-
Publication number: 20150303088Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.Type: ApplicationFiled: June 30, 2015Publication date: October 22, 2015Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
-
Publication number: 20150303089Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.Type: ApplicationFiled: June 30, 2015Publication date: October 22, 2015Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
-
Patent number: 8874274Abstract: A vacuum network control system includes a plurality of nodes configured for control over operational processes of the system. The plural nodes are configured, in a network ring or other topology, as a selectable master node for controlling the operational processes. Control can be distributed among, and passed between, each of the nodes. Each node on the network monitors adjacent network connectors to detect a fault in the network. In response to a detected fault, a disconnect is mapped to the fault, and the network topology is reconfigured for continued communication among the nodes and with external devices.Type: GrantFiled: January 22, 2009Date of Patent: October 28, 2014Assignee: Brooks Automation, Inc.Inventors: Randall J. McDonald, Oliver J. Dumas, Robert P. Sullivan, John J. Varone, Joseph Chopy, Jr., Daniel R. Jankins
-
Publication number: 20140130527Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.Type: ApplicationFiled: March 5, 2012Publication date: May 15, 2014Applicant: BROOKS AUTOMATION, INC.Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, JR., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
-
Publication number: 20140119857Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.Type: ApplicationFiled: November 14, 2013Publication date: May 1, 2014Applicant: Murata Machinery Ltd.Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
-
Publication number: 20120288348Abstract: An overhead hoist transport vehicle comprising: an overhead hoist; a translating stage; and a gripper coupled to the translating stage, the gripper being configured to grip a material unit; wherein the overhead hoist is configured to transport the material unit to one of a load port and a storage location by performing operations comprising: the overhead hoist being configured to vertically move the gripper to the load port and the storage location; and the translating stage being configured to horizontally move the overhead hoist to the load port and the storage location; and wherein the load port is beneath an overhead rail; and wherein at least a portion of the storage location is disposed lateral to the overhead rail.Type: ApplicationFiled: June 8, 2012Publication date: November 15, 2012Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
-
Patent number: 8197172Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.Type: GrantFiled: March 15, 2010Date of Patent: June 12, 2012Assignee: Murata Machinery, Ltd.Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
-
Publication number: 20110245964Abstract: A semiconductor workpiece processing system comprises at least one processing tool; a transport section configured to transport carriers to and from the processing tool; and a transport vehicle movably mounted on the transport section; wherein the transport vehicle is configured to: sense a location of a transport carrier alignment feature; adjust a location of a transport vehicle gripper based on the location of the transport carrier alignment feature; sense an attitude of the gripper at a point of engagement with the transport carrier; and adjust the location of the gripper based on the attitude of the gripper.Type: ApplicationFiled: April 6, 2010Publication date: October 6, 2011Inventors: Robert P. Sullivan, Michael L. Bufano
-
Publication number: 20110241845Abstract: Amongst other things, a material handling system comprises a controller; a transport system, the transport system comprising transport track sections and at least one transport vehicle, the at least one transport vehicle configured to move along the transport track sections and configured to transport a carrier; and at least one identification tag reader located along a particular transport track section, the at least one identification tag reader being configured to read an identification tag of the carrier being transported by the at least one transport vehicle and being further configured to send a information signal to the controller; wherein the controller is configured to verify at least a location of the carrier based on the information signal.Type: ApplicationFiled: April 6, 2010Publication date: October 6, 2011Inventors: Robert P. Sullivan, Thomas R. Mariano, Clinton M. Haris, Richard J. Pickreign