Patents by Inventor Robert P. Sullivan

Robert P. Sullivan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108907
    Abstract: A wearable cardioverter defibrillator system includes a support structure that a patient can wear. The system also includes electrodes that contact the patient, and define two or more channels from which ECG signals are sensed. A processor may evaluate the channels by analyzing their respective ECG signals, to determine which contains less noise than the other(s). The analysis can be by extracting statistics from the ECG signals, optionally after first processing them, and then by comparing these statistics. These statistics may include tall peak counts, amplitudes of peaks compared to historical peak amplitudes, signal baseline shift, dwell time near a baseline, narrow peak counts, zero crossings counts, determined heart rates, and so on. Once the less noisy signal is identified, its channel can be followed preferentially or to the exclusion of other channels, for continuing monitoring and/or determining whether to shock the patient.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 4, 2024
    Applicant: Physio-Control, Inc.
    Inventors: JAEHO KIM, JOSEPH L. SULLIVAN, ROBERT P. MARX
  • Patent number: 11938333
    Abstract: A wearable medical includes a walking detector module with a motion sensor that is configured to detect when the patient is walking or running. In embodiments, a parameter (referred to herein as a “Bouncy” parameter) is determined from Y-axis acceleration measurements. In some embodiments, the Bouncy parameter is a measurement of the AC component of the Y-axis accelerometer signal. This detection can be used by the medical device to determine how and/or whether to provide treatment to the patient wearing the medical device. For example, when used in a WCD, the walking detector can prevent “false alarms” because a walking patient is generally conscious and not in need of a shock.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: March 26, 2024
    Assignee: West Affum Holdings DAC
    Inventors: Jaeho Kim, Joseph L Sullivan, Robert P. Marx
  • Patent number: 10900699
    Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: January 26, 2021
    Assignee: Edwards Vacuum LLC
    Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, Jr., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
  • Patent number: 10760562
    Abstract: A cryopump includes a refrigerator with at least first and second stages. A radiation shield surrounds the second stage and is in thermal contact with the first stage. The radiation shield includes a drain hole to permit cryogenic fluid to traverse through the drain hole during regeneration. The cryopump also includes a primary pumping surface supporting adsorbent in thermal contact with the second stage. The second stage array assembly includes a primary condensing surface, protected surfaces having adsorbent, and non-primary condensing surfaces. A baffle is disposed over the drain hole. The baffle redirects gas from an annular space disposed between the radiation shield and the vacuum vessel that attempts to traverse through the drain hole to prevent the gas from condensing on a non-primary condensing surface. The baffle directs gas to condense on the primary condensing surface.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: September 1, 2020
    Assignee: Edwards Vacuum LLC
    Inventors: Allen J. Bartlett, Michael A. Driscoll, Michael J. Eacobacci, Jr., William L. Johnson, Robert P. Sullivan, Sergei Syssoev, Mark A. Stira, John J. Casello
  • Patent number: 10381251
    Abstract: An overhead hoist transport vehicle comprising: an overhead hoist; a translating stage; and a gripper coupled to the translating stage, the gripper being configured to grip a material unit; wherein the overhead hoist is configured to transport the material unit to one of a load port and a storage location by performing operations comprising: the overhead hoist being configured to vertically move the gripper to the load port and the storage location; and the translating stage being configured to horizontally move the overhead hoist to the load port and the storage location; and wherein the load port is beneath an overhead rail; and wherein at least a portion of the storage location is disposed lateral to the overhead rail.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: August 13, 2019
    Assignee: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Publication number: 20190063807
    Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.
    Type: Application
    Filed: October 29, 2018
    Publication date: February 28, 2019
    Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, JR., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
  • Patent number: 10147627
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: December 4, 2018
    Assignee: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Patent number: 10141212
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 27, 2018
    Assignee: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Patent number: 10113781
    Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: October 30, 2018
    Assignee: Brooks Automation, Inc.
    Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, Jr., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
  • Patent number: 9881823
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: January 30, 2018
    Assignee: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Patent number: 9620397
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 11, 2017
    Assignee: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Publication number: 20160069339
    Abstract: Cryopump components are improved using thin layer heating elements for temperature control or to serve as heaters. These heating elements may be located and prevent pooling during regeneration. The temperature control may also be achieved through the use of ceramic heating elements. The ceramic heating elements may also include a second function of structural support within the cryopump. Temperature control may further be achieved via the radiation shield, where the radiation shield includes a clad sheeting or coating.
    Type: Application
    Filed: September 11, 2015
    Publication date: March 10, 2016
    Inventors: Doreen J. Ball-DiFazio, William L. Johnson, Ronald N. Morris, Robert P. Sullivan
  • Publication number: 20150303089
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Application
    Filed: June 30, 2015
    Publication date: October 22, 2015
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Publication number: 20150303087
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Application
    Filed: June 30, 2015
    Publication date: October 22, 2015
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Publication number: 20150303088
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Application
    Filed: June 30, 2015
    Publication date: October 22, 2015
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Patent number: 8874274
    Abstract: A vacuum network control system includes a plurality of nodes configured for control over operational processes of the system. The plural nodes are configured, in a network ring or other topology, as a selectable master node for controlling the operational processes. Control can be distributed among, and passed between, each of the nodes. Each node on the network monitors adjacent network connectors to detect a fault in the network. In response to a detected fault, a disconnect is mapped to the fault, and the network topology is reconfigured for continued communication among the nodes and with external devices.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: October 28, 2014
    Assignee: Brooks Automation, Inc.
    Inventors: Randall J. McDonald, Oliver J. Dumas, Robert P. Sullivan, John J. Varone, Joseph Chopy, Jr., Daniel R. Jankins
  • Publication number: 20140130527
    Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.
    Type: Application
    Filed: March 5, 2012
    Publication date: May 15, 2014
    Applicant: BROOKS AUTOMATION, INC.
    Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, JR., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
  • Publication number: 20140119857
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 1, 2014
    Applicant: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Publication number: 20120288348
    Abstract: An overhead hoist transport vehicle comprising: an overhead hoist; a translating stage; and a gripper coupled to the translating stage, the gripper being configured to grip a material unit; wherein the overhead hoist is configured to transport the material unit to one of a load port and a storage location by performing operations comprising: the overhead hoist being configured to vertically move the gripper to the load port and the storage location; and the translating stage being configured to horizontally move the overhead hoist to the load port and the storage location; and wherein the load port is beneath an overhead rail; and wherein at least a portion of the storage location is disposed lateral to the overhead rail.
    Type: Application
    Filed: June 8, 2012
    Publication date: November 15, 2012
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Patent number: 8197172
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: June 12, 2012
    Assignee: Murata Machinery, Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan