Patents by Inventor Robert P. Sullivan

Robert P. Sullivan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10900699
    Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: January 26, 2021
    Assignee: Edwards Vacuum LLC
    Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, Jr., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
  • Patent number: 10760562
    Abstract: A cryopump includes a refrigerator with at least first and second stages. A radiation shield surrounds the second stage and is in thermal contact with the first stage. The radiation shield includes a drain hole to permit cryogenic fluid to traverse through the drain hole during regeneration. The cryopump also includes a primary pumping surface supporting adsorbent in thermal contact with the second stage. The second stage array assembly includes a primary condensing surface, protected surfaces having adsorbent, and non-primary condensing surfaces. A baffle is disposed over the drain hole. The baffle redirects gas from an annular space disposed between the radiation shield and the vacuum vessel that attempts to traverse through the drain hole to prevent the gas from condensing on a non-primary condensing surface. The baffle directs gas to condense on the primary condensing surface.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: September 1, 2020
    Assignee: Edwards Vacuum LLC
    Inventors: Allen J. Bartlett, Michael A. Driscoll, Michael J. Eacobacci, Jr., William L. Johnson, Robert P. Sullivan, Sergei Syssoev, Mark A. Stira, John J. Casello
  • Patent number: 10381251
    Abstract: An overhead hoist transport vehicle comprising: an overhead hoist; a translating stage; and a gripper coupled to the translating stage, the gripper being configured to grip a material unit; wherein the overhead hoist is configured to transport the material unit to one of a load port and a storage location by performing operations comprising: the overhead hoist being configured to vertically move the gripper to the load port and the storage location; and the translating stage being configured to horizontally move the overhead hoist to the load port and the storage location; and wherein the load port is beneath an overhead rail; and wherein at least a portion of the storage location is disposed lateral to the overhead rail.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: August 13, 2019
    Assignee: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Publication number: 20190063807
    Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.
    Type: Application
    Filed: October 29, 2018
    Publication date: February 28, 2019
    Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, JR., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
  • Patent number: 10147627
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: December 4, 2018
    Assignee: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Patent number: 10141212
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 27, 2018
    Assignee: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Patent number: 10113781
    Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: October 30, 2018
    Assignee: Brooks Automation, Inc.
    Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, Jr., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
  • Patent number: 9881823
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: January 30, 2018
    Assignee: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Patent number: 9620397
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 11, 2017
    Assignee: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Publication number: 20160069339
    Abstract: Cryopump components are improved using thin layer heating elements for temperature control or to serve as heaters. These heating elements may be located and prevent pooling during regeneration. The temperature control may also be achieved through the use of ceramic heating elements. The ceramic heating elements may also include a second function of structural support within the cryopump. Temperature control may further be achieved via the radiation shield, where the radiation shield includes a clad sheeting or coating.
    Type: Application
    Filed: September 11, 2015
    Publication date: March 10, 2016
    Inventors: Doreen J. Ball-DiFazio, William L. Johnson, Ronald N. Morris, Robert P. Sullivan
  • Publication number: 20150303087
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Application
    Filed: June 30, 2015
    Publication date: October 22, 2015
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Publication number: 20150303088
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Application
    Filed: June 30, 2015
    Publication date: October 22, 2015
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Publication number: 20150303089
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Application
    Filed: June 30, 2015
    Publication date: October 22, 2015
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Patent number: 8874274
    Abstract: A vacuum network control system includes a plurality of nodes configured for control over operational processes of the system. The plural nodes are configured, in a network ring or other topology, as a selectable master node for controlling the operational processes. Control can be distributed among, and passed between, each of the nodes. Each node on the network monitors adjacent network connectors to detect a fault in the network. In response to a detected fault, a disconnect is mapped to the fault, and the network topology is reconfigured for continued communication among the nodes and with external devices.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: October 28, 2014
    Assignee: Brooks Automation, Inc.
    Inventors: Randall J. McDonald, Oliver J. Dumas, Robert P. Sullivan, John J. Varone, Joseph Chopy, Jr., Daniel R. Jankins
  • Publication number: 20140130527
    Abstract: A refrigerant management system controls the supply of refrigerant from two or more variable speed and fixed speed compressors to a plurality of cryogenic refrigerators. The system employs a plurality of sensors to monitor and regulate the overall refrigerant supply to deliver an appropriate refrigerant supply to each of the cryogenic refrigerators. The amount of refrigerant to supply is based on an aggregate demand for refrigerant from the plurality of cryogenic refrigerators and a refrigerant correction metric. An appropriate supply of refrigerant is distributed to each cryogenic refrigerator by adjusting the speed of the variable speed compressors or, alternatively, selectively turning the compressors on or off. The speed of the variable speed compressors is adjusted by determining an amount of refrigerant to supply to the plurality of cryogenic refrigerators.
    Type: Application
    Filed: March 5, 2012
    Publication date: May 15, 2014
    Applicant: BROOKS AUTOMATION, INC.
    Inventors: Oliver J. Dumas, Maureen C. Buonpane, Doreen J. Ball-DiFazio, Ronald N. Morris, Allen J. Bartlett, Leonard A. Loranger, Joseph Chopy, JR., Robert P. Sullivan, John J. Varone, Paul E. Amundsen
  • Publication number: 20140119857
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 1, 2014
    Applicant: Murata Machinery Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Publication number: 20120288348
    Abstract: An overhead hoist transport vehicle comprising: an overhead hoist; a translating stage; and a gripper coupled to the translating stage, the gripper being configured to grip a material unit; wherein the overhead hoist is configured to transport the material unit to one of a load port and a storage location by performing operations comprising: the overhead hoist being configured to vertically move the gripper to the load port and the storage location; and the translating stage being configured to horizontally move the overhead hoist to the load port and the storage location; and wherein the load port is beneath an overhead rail; and wherein at least a portion of the storage location is disposed lateral to the overhead rail.
    Type: Application
    Filed: June 8, 2012
    Publication date: November 15, 2012
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Patent number: 8197172
    Abstract: A highly efficient Automated Material Handling System (AMHS) that allows an overhead hoist transport vehicle to load and unload Work-In-Process (WIP) parts directly to/from one or more WIP storage units included in the system. The AMHS includes an overhead hoist transport subsystem and at least one vertical carousel stocker having a plurality of storage bins. The overhead hoist transport subsystem includes an overhead hoist transport vehicle traveling along a suspended track defining a predetermined route, which runs adjacent to the carousel stocker, thereby allowing the overhead hoist transport vehicle to access a WIP part directly from one of the storage bins. At least one of the storage bins includes a movable shelf operative to move laterally from a first position along the carousel path to a second position near the overhead hoist transport vehicle.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: June 12, 2012
    Assignee: Murata Machinery, Ltd.
    Inventors: Brian J. Doherty, Thomas R. Mariano, Robert P. Sullivan
  • Publication number: 20110245964
    Abstract: A semiconductor workpiece processing system comprises at least one processing tool; a transport section configured to transport carriers to and from the processing tool; and a transport vehicle movably mounted on the transport section; wherein the transport vehicle is configured to: sense a location of a transport carrier alignment feature; adjust a location of a transport vehicle gripper based on the location of the transport carrier alignment feature; sense an attitude of the gripper at a point of engagement with the transport carrier; and adjust the location of the gripper based on the attitude of the gripper.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 6, 2011
    Inventors: Robert P. Sullivan, Michael L. Bufano
  • Publication number: 20110241845
    Abstract: Amongst other things, a material handling system comprises a controller; a transport system, the transport system comprising transport track sections and at least one transport vehicle, the at least one transport vehicle configured to move along the transport track sections and configured to transport a carrier; and at least one identification tag reader located along a particular transport track section, the at least one identification tag reader being configured to read an identification tag of the carrier being transported by the at least one transport vehicle and being further configured to send a information signal to the controller; wherein the controller is configured to verify at least a location of the carrier based on the information signal.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 6, 2011
    Inventors: Robert P. Sullivan, Thomas R. Mariano, Clinton M. Haris, Richard J. Pickreign