Patents by Inventor Robert Patrick Reynolds, Jr.

Robert Patrick Reynolds, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8614277
    Abstract: Isotactic polypropylene ethylene-propylene copolymer blends and in-line processes for producing. The blends may have between 1 and 50 wt % of isotactic polypropylene with a melt flow rate of between 0.5 and 20,000 g/10 min and a melting peak temperature of 145° C. or higher, and wherein the difference between the DSC peak melting and the peak crystallization temperatures is less than or equal to 0.5333 times the melting peak temperature minus 41.333° C., and between 50 and 99 wt % of ethylene-propylene copolymer including between 10 wt % and 20 wt % randomly distributed ethylene with a melt flow rate of between 0.5 and 20,000 g/10 min, wherein the copolymer is polymerized by a bulk homogeneous polymerization process, and wherein the total regio defects in the continuous propylene segments of the copolymer is between 40 and 150% greater than a copolymer of equivalent melt flow rate and wt % ethylene polymerized by a solution polymerization process.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: December 24, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Patrick Brant, Robert Patrick Reynolds, Jr., Aspy K. Mehta, Manika Varma-Nair, John W. Chu, Steven P. Rucker
  • Patent number: 8445620
    Abstract: Provided are elastic propylene-alpha olefin blocky copolymers. In one form, the elastic propylene-alpha olefin blocky copolymer includes an ?-olefin content from 12 to 25 wt % and having a propylene crystallinity less than 30 J/g, a Tm <100° C. and a Tg >?45° C., wherein said copolymer has blocky propylene segments with r1r2 greater than 1.5, and a process for producing such copolymer.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: May 21, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Andy Haishung Tsou, Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, Alan Anthony Galuska, Patrick Brant, Donald Andrew Winesett
  • Patent number: 8410230
    Abstract: Provided are methods of producing polymers with broadened molecular weight and/or composition distribution in a continuous homogeneous polymerization system utilizing reactor temperature gradients, reactor polymer concentration gradients, monomer concentration gradients, catalyst concentration gradients, and combinations thereof in the polymerization reactor. Such methods are particularly suitable when utilizing metallocene catalysts and other single-site catalysts, which generally produce polymers with narrow molecular weight and composition distribution.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: April 2, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, Patrick Brant, James Richardson Lattner
  • Patent number: 8399586
    Abstract: A process for feeding ethylene into a polymerization system includes providing a low-pressure ethylene stream, one or more low-pressure C3 to C20 monomer streams, an optional low-pressure inert solvent/diluent stream, and one or more reactors; metering the low-pressure ethylene stream, the one or more low-pressure C3 to C20 monomer streams, and the optional low-pressure inert solvent/diluent stream; blending the metered low-pressure ethylene stream, the metered one or more low-pressure C3 to C20 monomer streams, and the metered low-pressure optional inert solvent/diluent stream to form an ethylene-carrying low-pressure blended liquid feed stream; pressurizing the ethylene-carrying low-pressure blended liquid feed stream to the polymerization system pressure with one or more high-pressure pumps to thrm an ethylene-carrying high-pressure blended reactor feed stream; and feeding the ethylene-carrying high-pressure blended reactor feed stream to the one or more reactors.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: March 19, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, James Richardson Lattner, Gary D. Mohr
  • Publication number: 20130035442
    Abstract: Provided are elastic propylene-alpha olefin blocky copolymers. In one form, the elastic propylene-alpha olefin blocky copolymer includes an ?-olefin content from 12 to 25 wt % and having a propylene crystallinity less than 30 J/g, a Tm <100° C. and a Tg >?45° C., wherein said copolymer has blocky propylene segments with r1r2 greater than 1.5, and a process for producing such copolymer.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Andy Haishung Tsou, Gabor Kiss, Robert Patrick Reynolds, JR., John W. Chu, Alan Anthony Galuska, Patrick Brant, Donald Andrew Winesett
  • Publication number: 20120225998
    Abstract: Isotactic polypropylene ethylene-propylene copolymer blends and in-line processes for producing. The blends may have between 1 and 50 wt % of isotactic polypropylene with a melt flow rate of between 0.5 and 20,000 g/10 min and a melting peak temperature of 145° C. or higher, and wherein the difference between the DSC peak melting and the peak crystallization temperatures is less than or equal to 0.5333 times the melting peak temperature minus 41.333° C., and between 50 and 99 wt % of ethylene-propylene copolymer including between 10 wt % and 20 wt % randomly distributed ethylene with a melt flow rate of between 0.5 and 20,000 g/10 min, wherein the copolymer is polymerized by a bulk homogeneous polymerization process, and wherein the total regio defects in the continuous propylene segments of the copolymer is between 40 and 150% greater than a copolymer of equivalent melt flow rate and wt % ethylene polymerized by a solution polymerization process.
    Type: Application
    Filed: February 13, 2012
    Publication date: September 6, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Gabor Kiss, Patrick Brant, Robert Patrick Reynolds, JR., Aspy K. Mehta, Manika Varma-Nair, John W. Chu, Steven P. Rucker
  • Patent number: 8173748
    Abstract: Provided is a heat-seal resin. The resin includes 5 wt % to 95 wt % of a first copolymer and 95 wt % to 5 wt % of a second copolymer based on the total weight of the resin. The first copolymer and the second copolymer together are 90 wt % or more of the total weight of the resin. The first copolymer includes a first monomer of an alphaolefin of 2 to 4 carbon atoms and a second monomer selected from a second monomer of an alphaolefin of 2 to 8 carbon atoms. The first monomer and the second monomer of the first copolymer are different. The first copolymer has an MFR of from 5 to 1000 g/10 minutes and a Tfm of 66° C. to 80° C. The second copolymer includes a first monomer of an alphaolefin of 2 to 4 carbon atoms and a second monomer selected from a second monomer of an alphaolefin of 2 to 8 carbon atoms. The first monomer and the second monomer of the second copolymer are different. The second copolymer has an MFR of from 0.5 to 5 g/10 minutes and a Tfm of 45° C. to 66° C.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: May 8, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: David John Lohse, Thomas Tungshi Sun, Aspy K. Mehta, Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, Manika Varma-Nair
  • Patent number: 8143352
    Abstract: A process for fluid phase in-line blending of polymers.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: March 27, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Patrick Brant, Robert Patrick Reynolds, Jr., Robert Charles Portnoy, David B. Dunaway
  • Patent number: 8138269
    Abstract: Isotactic polypropylene ethylene-propylene copolymer blends and in-line processes for producing them. The blends may have between 1 and 50 wt % of isotactic polypropylene with a melt flow rate of between 0.5 and 20,000 g/10 min and a melting peak temperature of 145° C. or higher, and wherein the difference between the DSC peak melting and the peak crystallization temperatures is less than or equal to 0.5333 times the melting peak temperature minus 41.333° C., and between 50 and 99 wt % of ethylene-propylene copolymer including between 10 wt % and 20 wt % randomly distributed ethylene with a melt flow rate of between 0.5 and 20,000 g/10 min, wherein the copolymer is polymerized by a bulk homogeneous polymerization process, and wherein the total regio defects in the continuous propylene segments of the copolymer is between 40 and 150% greater than a copolymer of equivalent melt flow rate and wt % ethylene polymerized by a solution polymerization process.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: March 20, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Patrick Brant, Robert Patrick Reynolds, Jr., Aspy K. Mehta, Manika Varma-Nair, John W. Chu, Steven P. Rucker
  • Publication number: 20110196115
    Abstract: Provided are methods of producing polymers with broadened molecular weight and/or composition distribution in a continuous homogeneous polymerization system utilizing reactor temperature gradients, reactor polymer concentration gradients, monomer concentration gradients, catalyst concentration gradients, and combinations thereof in the polymerization reactor. Such methods are particularly suitable when utilizing metallocene catalysts and other single-site catalysts, which generally produce polymers with narrow molecular weight and composition distribution.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Gabor Kiss, Robert Patrick Reynolds, JR., John W. Chu, Patrick Brant, James Richardson Lattner
  • Publication number: 20110196116
    Abstract: Provided are methods of producing polymers with broadened molecular weight and/or composition distribution in a continuous homogeneous polymerization system utilizing reactor temperature gradients, reactor polymer concentration gradients, monomer concentration gradients, catalyst concentration gradients, and combinations thereof in the polymerization reactor. Such methods are particularly suitable when utilizing metallocene catalysts and other single-site catalysts, which generally produce polymers with narrow molecular weight and composition distribution.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Gabor Kiss, Robert Patrick Reynolds, JR., John W. Chu, Patrick Brant, James Richardson Lattner
  • Patent number: 7939610
    Abstract: Provided are methods of producing polymers with broadened molecular weight and/or composition distribution in a continuous homogeneous polymerization system utilizing reactor temperature gradients, reactor polymer concentration gradients, monomer concentration gradients, catalyst concentration gradients, and combinations thereof in the polymerization reactor. Such methods are particularly suitable when utilizing metallocene catalysts and other single-site catalysts, which generally produce polymers with narrow molecular weight and composition distribution.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: May 10, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, Patrick Brant, James Richardson Lattner
  • Patent number: 7928162
    Abstract: A process for fluid phase in-line blending of plasticized polymers is provided.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: April 19, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Alan Anthony Galuska, Robert Patrick Reynolds, Jr., John W. Chu, Bryan R. Chapman, Patrick Brant, Sudhin Datta
  • Patent number: 7910679
    Abstract: Provided are bulk homogeneous polymerization processes for producing ethylene propylene random copolymers. The process includes contacting in a reactor or in a series of reactors propylene monomer, ethylene comonomer with one or more catalyst systems and optional solvent (present at less than 40 wt %), wherein the reactor train is at a temperature of between 65° C. and 180° C.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: March 22, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gabor Kiss, Robert Patrick Reynolds, Jr., John W. Chu, Steven P. Rucker, James Richardson Lattner
  • Publication number: 20100063338
    Abstract: Provided are processes for feeding ethylene into a polymerization system operating in a liquid phase or supercritical phase.
    Type: Application
    Filed: September 3, 2009
    Publication date: March 11, 2010
    Inventors: GABOR KISS, ROBERT PATRICK REYNOLDS, JR., JOHN W. CHU, JAMES RICHARDSON LATTNER, GARY MOHR
  • Publication number: 20090292085
    Abstract: Provided are methods of producing polymers with broadened molecular weight and/or composition distribution in a continuous homogeneous polymerization system utilizing reactor temperature gradients, reactor polymer concentration gradients, monomer concentration gradients, catalyst concentration gradients, and combinations thereof in the polymerization reactor. Such methods are particularly suitable when utilizing metallocene catalysts and other single-site catalysts, which generally produce polymers with narrow molecular weight and composition distribution.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 26, 2009
    Inventors: Gabor Kiss, Robert Patrick Reynolds, JR., John W. Chu, Patrick Brant, James Richardson Lattner
  • Publication number: 20090163678
    Abstract: Provided are bulk homogeneous polymerization processes for producing ethylene propylene random copolymers. The process includes contacting in a reactor or in a series of reactors propylene monomer, ethylene comonomer with one or more catalyst systems and optional solvent (present at less than 40 wt %), wherein the reactor train is at a temperature of between 65° C. and 180° C.
    Type: Application
    Filed: November 14, 2008
    Publication date: June 25, 2009
    Inventors: Gabor Kiss, Robert Patrick Reynolds, JR., John W. Chu, Steven P. Rucker, James Richardson Lattner
  • Publication number: 20090076216
    Abstract: A process for fluid phase in-line blending of plasticized polymers is provided.
    Type: Application
    Filed: September 9, 2008
    Publication date: March 19, 2009
    Inventors: Gabor Kiss, Alan Anthony Galuska, Robert Patrick Reynolds, JR., John W. Chu, Bryan R. Chapman, Patrick Brant, Sudhin Datta
  • Patent number: 6329434
    Abstract: The instant invention is directed to a catalytic partial oxidation (CPO) process with improved ignition comprising; (a) igniting an ignition feed comprising hydrogen, diluent and oxygen in a catalytic partial oxidation catalyst bed wherein said ignition feed has a predetermined adiabatic reaction temperature sufficient to cause said catalyst bed to ignite in a manner which prevents said catalyst bed from undergoing thermal shock, (b) modifying said ignition feed following said ignition of said catalyst bed to obtain a reaction feed comprising oxygen and hydrocarbon-reactant in a molar ratio capable of producing partial oxidation products in said catalyst bed under partial oxidation conditions, wherein said modification of said ignition feed is conducted to accomplish a predetermined heatup rate of said catalyst bed, and wherein the amount of diluent present during said modification is sufficient to control the adiabatic reaction temperature.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: December 11, 2001
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Yu-Hsin Wen, Frank Hershkowitz, Robert Patrick Reynolds, Jr.