Patents by Inventor Robert Polak
Robert Polak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12061313Abstract: A system and method for diamond based multilayer antireflective coating for optical windows are provided. An antireflective coatings for optical windows may include an optical grade silicon substrate, a first polycrystalline diamond film on the silicon substrate, a germanium film on the first polycrystalline diamond film, a fused silica film on the germanium film; and a second polycrystalline diamond film on the fused silica film. A method of fabricating a diamond based multilayer antireflective coating may include the steps of cleaning and seeding an optical substrate, forming a first diamond layer on the optical substrate, forming a germanium layer on the first diamond layer, forming a fused silica layer on the germanium layer, cleaning and seeding the germanium layer, and forming a second diamond layer on the germanium layer.Type: GrantFiled: May 2, 2023Date of Patent: August 13, 2024Assignee: AKHAN SEMICONDUCTOR, INC.Inventors: Adam Khan, Robert Polak
-
Publication number: 20230273346Abstract: A system and method for diamond based multilayer antireflective coating for optical windows are provided. An antireflective coatings for optical windows may include an optical grade silicon substrate, a first polycrystalline diamond film on the silicon substrate, a germanium film on the first polycrystalline diamond film, a fused silica film on the germanium film; and a second polycrystalline diamond film on the fused silica film. A method of fabricating a diamond based multilayer antireflective coating may include the steps of cleaning and seeding an optical substrate, forming a first diamond layer on the optical substrate, forming a germanium layer on the first diamond layer, forming a fused silica layer on the germanium layer, cleaning and seeding the germanium layer, and forming a second diamond layer on the germanium layer.Type: ApplicationFiled: May 2, 2023Publication date: August 31, 2023Inventors: Adam Khan, Robert Polak
-
Patent number: 11675110Abstract: A system and method for diamond based multilayer antireflective coating for optical windows are provided. An antireflective coatings for optical windows may include an optical grade silicon substrate, a first polycrystalline diamond film on the silicon substrate, a germanium film on the first polycrystalline diamond film, a fused silica film on the germanium film; and a second polycrystalline diamond film on the fused silica film. A method of fabricating a diamond based multilayer antireflective coating may include the steps of cleaning and seeding an optical substrate, forming a first diamond layer on the optical substrate, forming a germanium layer on the first diamond layer, forming a fused silica layer on the germanium layer, cleaning and seeding the germanium layer, and forming a second diamond layer on the germanium layer.Type: GrantFiled: August 11, 2021Date of Patent: June 13, 2023Assignee: AKHAN SEMICONDUCTOR, INC.Inventors: Adam Khan, Robert Polak
-
Publication number: 20230151481Abstract: A transparent display includes a display including a transparent substrate and a patterned diamond layer formed on the transparent substrate to at least in part define a diamond waveguide. At least two electronic devices can be connected by the diamond waveguide, and can include a sensor, a transducer, or electronic circuitry, including communication, control, or data processing electronic circuitry.Type: ApplicationFiled: January 20, 2023Publication date: May 18, 2023Inventors: Adam Khan, Robert Polak, Kiran Kumar Kovi
-
Publication number: 20230091473Abstract: A multilayer diamond system includes an optically transparent substrate and an optically transparent intermediate layer deposited on the optically transparent substrate. A diamond layer is deposited on the optically transparent intermediate layer and formed from diamond having at least 50% of diamond grains sized between 2 nm and 500 nanometers.Type: ApplicationFiled: November 18, 2022Publication date: March 23, 2023Inventors: Adam Khan, Robert Polak, Priya Raman
-
Patent number: 11572621Abstract: Disclosed herein is system and method for protective diamond coatings. The method may include the steps of cleaning and seeding a substrate, depositing a crystalline diamond layer on the substrate, etching the substrate; and attaching the substrate to protected matter. The crystalline diamond layer may reflect at least 28 percent of electromagnetic energy in a beam having a bandwidth of 800 nanometer to 1 micrometer.Type: GrantFiled: September 24, 2020Date of Patent: February 7, 2023Assignee: AKHAN SEMICONDUCTOR, INC.Inventors: Adam Khan, Robert Polak, Kiran Kumar Kovi
-
Patent number: 11552276Abstract: Disclosed herein is a transparent glass system that includes an optical grade silicon substrate, a transparent substrate layer; a titanium dioxide transparent layer, the transparent layer having an index of refraction of 2.35 or greater; and a polycrystalline diamond layer, wherein the transparent layer is between the substrate layer and the polycrystalline diamond layer.Type: GrantFiled: January 19, 2021Date of Patent: January 10, 2023Assignee: AKHAN Semiconductor, Inc.Inventors: Adam Khan, Robert Polak, Priya Raman
-
Publication number: 20210373203Abstract: A system and method for diamond based multilayer antireflective coating for optical windows are provided. An antireflective coatings for optical windows may include an optical grade silicon substrate, a first polycrystalline diamond film on the silicon substrate, a germanium film on the first polycrystalline diamond film, a fused silica film on the germanium film; and a second polycrystalline diamond film on the fused silica film. A method of fabricating a diamond based multilayer antireflective coating may include the steps of cleaning and seeding an optical substrate, forming a first diamond layer on the optical substrate, forming a germanium layer on the first diamond layer, forming a fused silica layer on the germanium layer, cleaning and seeding the germanium layer, and forming a second diamond layer on the germanium layer.Type: ApplicationFiled: August 11, 2021Publication date: December 2, 2021Inventors: Adam Khan, Robert Polak
-
Patent number: 11112539Abstract: A system and method for diamond based multilayer antireflective coating for optical windows are provided. An antireflective coatings for optical windows may include an optical grade silicon substrate, a first polycrystalline diamond film on the silicon substrate, a germanium film on the first polycrystalline diamond film, a fused silica film on the germanium film; and a second polycrystalline diamond film on the fused silica film. A method of fabricating a diamond based multilayer antireflective coating may include the steps of cleaning and seeding an optical substrate, forming a first diamond layer on the optical substrate, forming a germanium layer on the first diamond layer, forming a fused silica layer on the germanium layer, cleaning and seeding the germanium layer, and forming a second diamond layer on the germanium layer.Type: GrantFiled: September 23, 2019Date of Patent: September 7, 2021Assignee: AKHAN Semiconductor, Inc.Inventors: Adam Khan, Robert Polak
-
Publication number: 20210257595Abstract: Disclosed herein is a transparent glass system that includes an optical grade silicon substrate, a transparent substrate layer; a titanium dioxide transparent layer, the transparent layer having an index of refraction of 2.35 or greater; and a polycrystalline diamond layer, wherein the transparent layer is between the substrate layer and the polycrystalline diamond layer.Type: ApplicationFiled: January 19, 2021Publication date: August 19, 2021Inventors: Adam Khan, Robert Polak, Priya Raman
-
Publication number: 20210140037Abstract: Disclosed herein is system and method for protective diamond coatings. The method may include the steps of cleaning and seeding a substrate, depositing a crystalline diamond layer on the substrate, etching the substrate; and attaching the substrate to protected matter. The crystalline diamond layer may reflect at least 28 percent of electromagnetic energy in a beam having a bandwidth of 800 nanometer to 1 micrometer.Type: ApplicationFiled: September 24, 2020Publication date: May 13, 2021Inventors: Adam Khan, Robert Polak, Kiran Kumar Kovi
-
Patent number: 10897028Abstract: Disclosed herein is a transparent glass system that includes an optical grade silicon substrate, a transparent substrate layer; a titanium dioxide transparent layer, the transparent layer having an index of refraction of 2.35 or greater; and a polycrystalline diamond layer, wherein the transparent layer is between the substrate layer and the polycrystalline diamond layer.Type: GrantFiled: March 4, 2019Date of Patent: January 19, 2021Inventors: Adam Khan, Robert Polak, Priya Raman
-
Patent number: 10760157Abstract: Disclosed herein is a transparent glass system that includes an optical grade silicon substrate, and a nanocrystalline diamond film on the silicon substrate, the diamond film deposited using a chemical vapor deposition system having a reactor in which methane, hydrogen and argon source gases are added. Further disclosed is a method of fabricating transparent glass that includes the steps of seeding an optical grade silicon substrate and forming a nanocrystalline diamond film on the silicon substrate using a chemical vapor deposition system having a reactor in which methane, hydrogen and argon source gases are added.Type: GrantFiled: August 9, 2017Date of Patent: September 1, 2020Assignee: AKHAN Semiconductor, Inc.Inventors: Adam Khan, Robert Polak
-
Patent number: 10725214Abstract: A broad band mirror system and method, wherein the system includes a mechanical substrate layer, a reflective metal layer on the mechanical substrate level, and a diamond layer, and the method includes the steps of selecting a sacrificial substrate layer, depositing a diamond layer on the substrate layer, smoothing a first surface of the diamond layer, depositing a reflective metal layer on the diamond layer, bonding a mechanical substrate to the diamond layer, removing the sacrificial substrate level, and smoothing a second diamond surface.Type: GrantFiled: February 8, 2018Date of Patent: July 28, 2020Assignee: AKHAN Semiconductor, Inc.Inventors: Ernest Schirmann, Priya Raman, Adam Khan, Robert Polak
-
Publication number: 20200158915Abstract: A system and method for diamond based multilayer antireflective coating for optical windows are provided. An antireflective coatings for optical windows may include an optical grade silicon substrate, a first polycrystalline diamond film on the silicon substrate, a germanium film on the first polycrystalline diamond film, a fused silica film on the germanium film; and a second polycrystalline diamond film on the fused silica film. A method of fabricating a diamond based multilayer antiretlective coating may include the steps of cleaning and seeding an optical substrate, forming a first diamond layer on the optical substrate, forming a germanium layer on the first diamond layer, forming a fused silica layer on the germanium layer, cleaning and seeding the germanium layer, and forming a second diamond layer on the germanium layer.Type: ApplicationFiled: September 23, 2019Publication date: May 21, 2020Inventors: Adam Khan, Robert Polak
-
Publication number: 20200067024Abstract: Disclosed herein is a transparent glass system that includes an optical grade silicon substrate, a transparent substrate layer; a titanium dioxide transparent layer, the transparent layer having an index of refraction of 2.35 or greater; and a polycrystalline diamond layer, wherein the transparent layer is between the substrate layer and the polycrystalline diamond layer.Type: ApplicationFiled: March 4, 2019Publication date: February 27, 2020Inventors: Adam Khan, Robert Polak, Priya Raman
-
Patent number: 10422928Abstract: A system and method for diamond based multilayer antireflective coating for optical windows are provided. An antireflective coatings for optical windows may include an optical grade silicon substrate, a first polycrystalline diamond film on the silicon substrate, a germanium film on the first polycrystalline diamond film, a fused silica film on the germanium film; and a second polycrystalline diamond film on the fused silica film. A method of fabricating a diamond based multilayer antireflective coating may include the steps of cleaning and seeding an optical substrate, forming a first diamond layer on the optical substrate, forming a germanium layer on the first diamond layer, forming a fused silica layer on the germanium layer, cleaning and seeding the germanium layer, and forming a second diamond layer on the germanium layer.Type: GrantFiled: March 1, 2017Date of Patent: September 24, 2019Assignee: AKHAN SEMICONDUCTOR, INC.Inventors: Adam Khan, Robert Polak
-
Patent number: 10254445Abstract: A system and method for diamond based multilayer antireflective coating for optical windows are provided. An antireflective coatings for optical windows may include an optical grade silicon substrate; a plurality of polycrystalline diamond films, a plurality of germanium films, and a plurality of fused silica films. A method of fabricating a diamond based multilayer antireflective coating may include the steps of cleaning and seeding an optical substrate, forming a plurality of diamond layers above the optical substrate, forming a plurality of germanium layers above the optical substrate; and forming a plurality of fused silica layers above the optical substrate, wherein the reflectance of the antireflective coating is between 0.1 and 3.0 percent for infrared spectrum wavelengths between 1800 and 5000 nanometers.Type: GrantFiled: March 16, 2017Date of Patent: April 9, 2019Inventors: Adam Khan, Robert Polak
-
Patent number: RE50260Abstract: Disclosed herein is a transparent glass system that includes an optical grade silicon substrate, and a nanocrystalline diamond film on the silicon substrate, the diamond film deposited using a chemical vapor deposition system having a reactor in which methane, hydrogen and argon source gases are added. Further disclosed is a method of fabricating transparent glass that includes the steps of seeding an optical grade silicon substrate and forming a nanocrystalline diamond film on the silicon substrate using a chemical vapor deposition system having a reactor in which methane, hydrogen and argon source gases are added.Type: GrantFiled: August 31, 2022Date of Patent: January 7, 2025Assignee: AKHAN SEMICONDUCTOR, INC.Inventors: Adam Khan, Robert Polak
-
Patent number: RE50498Abstract: Disclosed herein is a transparent glass system that includes an optical grade silicon substrate, and a nanocrystalline diamond film on the silicon substrate, the diamond film deposited using a chemical vapor deposition system having a reactor in which methane, hydrogen and argon source gases are added. Further disclosed is a method of fabricating transparent glass that includes the steps of seeding an optical grade silicon substrate and forming a nanocrystalline diamond film on the silicon substrate using a chemical vapor deposition system having a reactor in which methane, hydrogen and argon source gases are added.Type: GrantFiled: August 31, 2022Date of Patent: July 22, 2025Assignee: Diamond Technologies Inc.Inventors: Adam Khan, Robert Polak