Patents by Inventor Robert Quinn

Robert Quinn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130125756
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Application
    Filed: May 21, 2012
    Publication date: May 23, 2013
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, JR., Robert Quinn, Erin Marie Sorensen
  • Publication number: 20130042064
    Abstract: The present disclosure is directed to a system for dynamically adaptive caching. The system includes a storage device having a physical capacity for storing data received from a host. The system may also include a control module for receiving data from the host and compressing the data to a compressed data size. Alternatively, the data may also be compressed by the storage device. The control module may be configured for determining an amount of available space on the storage device and also determining a reclaimed space, the reclaimed space being according to a difference between the size of the data received from the host and the compressed data size. The system may also include an interface module for presenting a logical capacity to the host. The logical capacity has a variable size and may include at least a portion of the reclaimed space.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 14, 2013
    Applicant: LSI Corporation
    Inventors: Horia Simionescu, Mark Ish, Luca Bert, Robert Quinn, Earl T. Cohen, Timothy Canepa
  • Patent number: 8197580
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: June 12, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, Jr., Robert Quinn, Erin Marie Sorensen
  • Patent number: 8038981
    Abstract: Complex metal oxide-containing pellets and their use for producing hydrogen. The complex metal oxide-containing pellets are suitable for use in a fixed bed reactor due to sufficient crush strength. The complex metal oxide-containing pellets comprise one or more complex metal oxides and at least one of in-situ formed calcium titanate and calcium aluminate. calcium titanate and calcium aluminate are formed by reaction of suitable precursors in a mixture with one or more complex metal carbonates. The complex metal oxide-containing pellets optionally comprise at least one precious metal.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: October 18, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Diwakar Garg, Robert Quinn, Frederick Carl Wilhelm, Gokhan Alptekin, Margarita Dubovik, Matthew Schaefer
  • Publication number: 20110154989
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Application
    Filed: March 8, 2011
    Publication date: June 30, 2011
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, JR., Robert Quinn, Erin Marie Sorensen
  • Patent number: 7909913
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: March 22, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, Jr., Robert Quinn, Erin Marie Sorensen
  • Patent number: 7897128
    Abstract: The present invention provides a process for making a complex metal oxide comprising the formula AxByOz. The process comprises the steps of: (a) reacting in solution at a temperature of between about 75° C. to about 100° C. at least one water-soluble salt of A, at least one water-soluble salt of B and a stoichiometric amount of a carbonate salt or a bicarbonate salt required to form a mole of a carbonate precipitate represented by the formula AxBy(CO3)n, wherein the reacting is conducted in a substantial absence of carbon dioxide to form the carbonate precipitate and wherein the molar amount of carbonate salt or bicarbonate salt is at least three times the stoichiometric amount of carbonate or bicarbonate salt required to form a mole of the carbonate precipitate; and (b) reacting the carbonate precipitate with an oxygen containing fluid under conditions to form the complex metal oxide.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: March 1, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Robert Quinn, Diwakar Garg, Frederick Carl Wilhelm, Terry Lee Slager
  • Patent number: 7783788
    Abstract: Methods, apparatuses and systems directed to virtualized access to input/output (I/O) subsystems. In one implementation, the present invention allows multiple stand-alone application servers or virtual servers to share one or more I/O subsystems, such as host-bus adapters and network interface cards. In one implementation, I/O access is managed by one or more virtual I/O servers. A virtual I/O server includes a multiplexer, and associated modules, that connect application servers over an I/O switch fabric with one or more HBA and/or NIC drivers. Implementations of the present invention can be configured to consolidate I/O access, allowing multiple servers to share one or more HBAs and NICs; dynamic control over network and storage I/O bandwidth; and provisioning of network and storage I/O access across multiple application servers.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: August 24, 2010
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Robert Quinn, Ushasri Sunkara, Isam Akkawi, Scott Arthur Lurndal
  • Publication number: 20100198618
    Abstract: A server device, and related systems and methods for managing dialysis patient information. The patient information includes information relating to stages of data collection including baseline characteristics, eligibility for treatment modalities, and outcomes. A remote terminal is configured for displaying in the remote terminal a first user interface for receiving the patient information for the subject patient. The server is configured to receive from the remote terminal the patient information for the subject patient and store said patient information in a patient record in the memory, and determine, based on medical logic rules, whether the patient information is consistent with the patient record in order to proceed to a next stage of data collection, and if so permitting displaying in the remote terminal a second user interface for receiving patient information relating to the next stage of data collection.
    Type: Application
    Filed: January 30, 2009
    Publication date: August 5, 2010
    Applicants: OLIVER MEDICAL MANAGEMENT INC., SUNNYBROOK HEALTH SCIENCES CENTRE
    Inventors: Matthew Oliver, Robert Quinn
  • Publication number: 20100040520
    Abstract: A method and bed for separating a reactive gas from a feed gas mixture is disclosed. The method includes reacting the reactive gas with a bed of reactive solid in an exothermic reaction to create a second solid and a product gas from which the reactive gas is depleted. The product gas is removed and the heat from the reaction is used to liberate the reactive gas from the second solid in an endothermic reaction which yields the reactive solid. The reactive gas is removed and sequestered. Heat reservoir material is included in the bed to retain the heat in support of the endothermic reaction. A device for executing the method having an insulated chamber holding the bed, as well as process units formed of multiple beds are also disclosed. The process units allow the method to be operated cyclically, providing a continuous flow of feed gas, reactive gas and product gas.
    Type: Application
    Filed: October 23, 2009
    Publication date: February 18, 2010
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Robert Quinn, Vincent White, Rodney John Allam
  • Publication number: 20100011955
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 21, 2010
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, JR., Robert Quinn, Erin Marie Sorensen
  • Publication number: 20090196822
    Abstract: Complex metal oxide-containing pellets and their use for producing hydrogen. The complex metal oxide-containing pellets are suitable for use in a fixed bed reactor due to sufficient crush strength. The complex metal oxide-containing pellets comprise one or more complex metal oxides and at least one of in-situ formed calcium titanate and calcium aluminate. calcium titanate and calcium aluminate are formed by reaction of suitable precursors in a mixture with one or more complex metal carbonates. The complex metal oxide-containing pellets optionally comprise at least one precious metal.
    Type: Application
    Filed: January 13, 2009
    Publication date: August 6, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Diwakar Garg, Robert Quinn, Frederick Carl Wilhelm, Gokhan Alptekin, Margarita Dubovik, Matthew Schaefer
  • Publication number: 20090162268
    Abstract: A method for separating a reactive gas from a feed gas mixture is disclosed. The method includes reacting the reactive gas with a bed of reactive solid in an exothermic reaction to create a second solid and a product gas from which the reactive gas is depleted. The product gas is removed and the heat from the reaction is used to liberate the reactive gas from the second solid in an endothermic reaction which yields the reactive solid. The reactive gas is removed and sequestered. Heat reservoir material is included in the bed to retain the heat in support of the endothermic reaction. A device for executing the method having an insulated chamber holding the bed, as well as process units formed of multiple beds are also disclosed. The process units allow the method to be operated cyclically, providing a continuous flow of feed gas, reactive gas and product gas.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 25, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jeffrey Raymond Hufton, Robert Quinn, Vincent White, Rodney John Allam
  • Publication number: 20080260621
    Abstract: The present invention provides a process for making a complex metal oxide comprising the formula AxByOz. The process comprises the steps of: (a) reacting in solution at a temperature of between about 75° C. to about 100° C. at least one water-soluble salt of A, at least one water-soluble salt of B and a stoichiometric amount of a carbonate salt or a bicarbonate salt required to form a mole of a carbonate precipitate represented by the formula AxBy(CO3)n, wherein the reacting is conducted in a substantial absence of carbon dioxide to form the carbonate precipitate and wherein the molar amount of carbonate salt or bicarbonate salt is at least three times the stoichiometric amount of carbonate or bicarbonate salt required to form a mole of the carbonate precipitate; and (b) reacting the carbonate precipitate with an oxygen containing fluid under conditions to form the complex metal oxide.
    Type: Application
    Filed: April 20, 2007
    Publication date: October 23, 2008
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Robert Quinn, Diwakar Garg, Frederick Carl Wilhelm, Terry Lee Slager
  • Patent number: 7429373
    Abstract: Process for producing hydrogen comprising reacting at least one hydrocarbon and steam in the presence of a complex metal oxide and a steam-hydrocarbon reforming catalyst in a production step under reaction conditions sufficient to form hydrogen gas and a spent complex metal oxide, wherein the complex metal oxide is represented by the formula AxByOn wherein A represents at least one metallic element having an oxidation state ranging from +1 to +3, inclusive, wherein the metallic element is capable of forming a metal carbonate; x is a number from 1 to 10, inclusive; B represents at least one metallic element having an oxidation state ranging from +1 to +7, inclusive; y is a number from 1 to 10, inclusive; and n represents a value such that the complex metal oxide is rendered electrically neutral.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: September 30, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Guido Peter Pez, Robert Quinn, Shankar Nataraj
  • Patent number: D554028
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: October 30, 2007
    Assignee: Donacorp
    Inventor: Robert A. Quinn
  • Patent number: D556097
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: November 27, 2007
    Assignee: Donacorp
    Inventor: Robert A. Quinn
  • Patent number: D562190
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: February 19, 2008
    Assignee: Donacorp
    Inventor: Robert A. Quinn
  • Patent number: D571691
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: June 24, 2008
    Assignee: DonaCorp
    Inventor: Robert A. Quinn
  • Patent number: D600168
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: September 15, 2009
    Assignee: DonaCorp
    Inventor: Robert A. Quinn