Patents by Inventor Robert R. Thomson

Robert R. Thomson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11696676
    Abstract: A system comprises a waveguide apparatus comprising a plurality of input waveguides, a multimode waveguide, and a guided-wave transition coupling the plurality of input waveguides to the multimode waveguide. The system further comprises at least one light source configured to excite in turn each of a plurality of the input waveguides, or each of a plurality of combinations of the input waveguides, thereby generating a plurality of different light patterns in turn at an output of the waveguide apparatus. The waveguide apparatus is configured to direct each of the plurality of different light patterns to a target region. The system further comprises at least one detector configured to detect light transmitted, reflected or emitted from the target region in response to each of the different light patterns, and to output signals representing the detected light.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: July 11, 2023
    Assignees: THE UNIVERSITY OF BATH, HERIOT-WATT UNIVERSITY
    Inventors: Robert R Thomson, Debaditya Choudhury, Tim Birks
  • Publication number: 20230122602
    Abstract: A method of fabricating an optical fibre preform is disclosed comprising using a subtractive process on an optical monolith to define therein at least a transverse section of the optical fibre preform, wherein the transverse section comprises at least two regions with different refractive indexes. An optical fibre preform fabricated in accordance with the method is also disclosed along with a method of assembling optical components using a subtractive process to define a first interconnecting feature in or for use with a first optical component; using a subtractive process to define a second interconnecting feature in or for use with a second optical component; and coupling the first and second components together using the first and second interconnecting features such that the coupling dictates a passive alignment of the first and second components.
    Type: Application
    Filed: March 10, 2021
    Publication date: April 20, 2023
    Inventors: Robert R THOMSON, Calum ROSS
  • Patent number: 11131863
    Abstract: A method of forming an optical device in a body (32), comprises performing a plurality of laser scans (34,36) to form the optical device, each scan comprising relative movement of a laser beam and the body thereby to scan the laser beam along a respective path (34a, 34b 34f; 36a, 36b 36f) through the body to alter the refractive index of material of that path, wherein the paths are arranged to provide in combination a route for propagation of light through the optical device in operation that is larger in a direction substantially perpendicular to the route for propagation of light than any one of the paths individually.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: September 28, 2021
    Assignee: Optoscribe Limited
    Inventors: Nicholas D. Psaila, Ajoy Kumar Kar, Henry Thomas Gibson Bookey, Robert R. Thomson, Graeme Brown
  • Publication number: 20210063722
    Abstract: A system comprises a medical device configured to be positioned at least partially within a scattering medium, the medical device comprising at least one optical fibre or other waveguide having a plurality of light-emitting regions arranged along at least part of the length of the at least one optical fibre or other waveguide; a pulsed light source configured to transmit pulsed light into a proximal end of the at least one optical fibre or other waveguide, such that the pulsed light is guided along the at least one optical fibre or other waveguide to the light-emitting regions and emitted by the light-emitting regions into the scattering medium; at least one detector configured to receive photons of the pulsed light that have passed through the scattering medium; and a processor configured to: select signals corresponding to at least some of the received photons; determine a respective location of each of the light-emitting regions based on the selected signals; and determine a path of at least part of the me
    Type: Application
    Filed: January 9, 2019
    Publication date: March 4, 2021
    Applicant: The University Court of the University of Edinburgh
    Inventors: Kevin Dhaliwal, Michael G. Tanner, Robert R. Thomson
  • Publication number: 20200109084
    Abstract: A method of forming an optical device in a body (32), comprises performing a plurality of laser scans (34,36) to form the optical device, each scan comprising relative movement of a laser beam and the body thereby to scan the laser beam along a respective path (34a, 34b 34f; 36a, 36b 36f) through the body to alter the refractive index of material of that path, wherein the paths are arranged to provide in combination a route for propagation of light through the optical device in operation that is larger in a direction substantially perpendicular to the route for propagation of light than any one of the paths individually.
    Type: Application
    Filed: February 1, 2019
    Publication date: April 9, 2020
    Inventors: Nicholas D. Psaila, Ajoy Kumar Kar, Henry Thomas Gibson Bookey, Robert R. Thomson, Graeme Brown
  • Publication number: 20200069165
    Abstract: A system comprises a waveguide apparatus comprising a plurality of input waveguides, a multimode waveguide, and a guided-wave transition coupling the plurality of input waveguides to the multimode waveguide. The system further comprises at least one light source configured to excite in turn each of a plurality of the input waveguides, or each of a plurality of combinations of the input waveguides, thereby generating a plurality of different light patterns in turn at an output of the waveguide apparatus. The waveguide apparatus is configured to direct each of the plurality of different light patterns to a target region. The system further comprises at least one detector configured to detect light transmitted, reflected or emitted from the target region in response to each of the different light patterns, and to output signals representing the detected light.
    Type: Application
    Filed: May 4, 2018
    Publication date: March 5, 2020
    Applicant: The University Court of the University of Edinburgh
    Inventors: Robert R Thomson, Debaditya Choudhury, Tim Birks
  • Patent number: 10564441
    Abstract: A method of forming an optical device in a body (32), comprises performing a plurality of laser scans (34,36) to form the optical device, each scan comprising relative movement of a laser beam and the body thereby to scan the laser beam along a respective path (34a, 34b 34f; 36a, 36b 36f) through the body to alter the refractive index of material of that path, wherein the paths are arranged to provide in combination a route for propagation of light through the optical device in operation that is larger in a direction substantially perpendicular to the route for propagation of light than any one of the paths individually.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: February 18, 2020
    Assignee: Optoscribe Limited
    Inventors: Nicholas D Psaila, Ajoy Kumar Kar, Henry Thomas Gibson Bookey, Robert R Thomson, Graeme Brown
  • Publication number: 20190298158
    Abstract: A method of determining a location of an optical fibre positioned at least partially inside a scattering medium, the method comprises transmitting pulsed light into the scattering medium, receiving, by a detector, photons of the pulsed light that have passed through the scattering medium, selecting signals corresponding to some of the received photons, wherein the selecting is based on a time of arrival of the received photons; and determining a location of the optical fibre based on the selected signals.
    Type: Application
    Filed: July 7, 2017
    Publication date: October 3, 2019
    Inventors: Kev Dhaliwal, Michael G. Tanner, Robert R. Thomson
  • Publication number: 20130208358
    Abstract: A method of forming an optical device in a body (32), comprises performing a plurality of laser scans (34,36) to form the optical device, each scan comprising relative movement of a laser beam and the body thereby to scan the laser beam along a respective path (34a, 34b 34f; 36a, 36b 36f) through the body to alter the refractive index of material of that path, wherein the paths are arranged to provide in combination a route for propagation of light through the optical device in operation that is larger in a direction substantially perpendicular to the route for propagation of light than any one of the paths individually.
    Type: Application
    Filed: June 10, 2011
    Publication date: August 15, 2013
    Inventors: Nicholas D. Psaila, Ajoy Kumar Kar, Henry Thomas Gibson Bookey, Robert R. Thomson, Graeme Brown