Patents by Inventor Robert R. Ward

Robert R. Ward has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240066470
    Abstract: The present disclosure provides a filtration media comprising a combination of (i) a hollow fiber membrane and (ii) adsorption media. The disclosure further provides a device, the device comprising a filtration media, which filtration media includes a combination of (i) a hollow fiber membrane and (ii) adsorption media.
    Type: Application
    Filed: September 20, 2023
    Publication date: February 29, 2024
    Inventors: Robert S. Ward, Keith R. McCrea
  • Patent number: 11911551
    Abstract: Methods and devices are disclosed for the treatment of a subject suffering from drug intoxication by cleansing a contaminated sample from the subject with adsorption media. The adsorption media composition is selected for its antithrombogenic properties and for its ability to adhere to one or more drug targets to be reduced or eliminated. The media can further be held in a cartridge for use in extracorporeal treatments such as those of hemoperfusion. Contacting the contaminated sample from the subject with the absorption medium allows for the separation of a portion of the drug target from the sample, producing a cleansed sample that can be infused into the subject.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: February 27, 2024
    Assignee: ExThera Medical Corporation
    Inventors: Robert S. Ward, Keith R. McCrea
  • Patent number: 11915259
    Abstract: A computerized system for transacting the purchase and sale of consumer motor fuels between motor fuel merchants and retail consumers through software on a mobile or desktop connected device for periods in the future through the simultaneous execution of multi-party, multi-layered contingent transactions and pricing algorithms to ensure that all inter-related motor fuel merchant transactions are simultaneously transacted upon a retail consumer purchase execution. Motor fuels include refined products such as gasoline and diesel fuel, renewable fuels (e.g. ethanol, biodiesel), natural gas (including liquefied natural gas), jet fuel and electricity.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: February 27, 2024
    Assignee: Gasmart, LLC
    Inventors: Joseph H. LeBlanc, Jr., Nick DiCosola, Sagy P. Mintz, Leo E. Murphy, Robert A. Miller, William K. Ward, William F. Kerins, Luis R. Luque, Parker P. Drew, James V. Blanton
  • Patent number: 8018838
    Abstract: A system supports 50 ms protection switching times independent of network architecture. The system includes multiple protection switch fabrics to perform facility protection switching for the signals and a central switch fabric to switch a subset of the signals in a non-facility protection switching manner among the protection switch fabrics. Linear and ring network configurations are supported by the system. The system has flexibility to perform Linear Automatic Protection Switching (LAPS), Unidirection Path Switched Ring (UPSR) protection switching, and Bidirectional Line Switched Ring (BLSR) protection switching without burdening the central switch fabric with unnecessary or redundant traffic.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: September 13, 2011
    Assignee: Tellabs Operations, Inc.
    Inventors: Chris R. Zettinger, Mark E. Boduch, Robert R. Ward
  • Patent number: 7110668
    Abstract: A way of testing a wavelength division multiplexed (WDM) system without requiring connection to data source/sink equipment. A test signal is introduced onto a light path of interest in the system, and the test signal is monitored downstream for signal integrity. Lack of signal integrity is used to identify a fault in the lightpath. Alternatively, optical loopbacks may be used to localize and identify a fault in the lightpath. The lightpath includes a source optical node connected to a sink optical node via intermediate optical nodes. An optical signal introduced at the source node with a destination at the sink node may be looped back at any one of the intermediate nodes or the sink node to localize and identify a fault in the lightpath.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: September 19, 2006
    Assignee: Tellabs Operations, Inc.
    Inventors: Ornan A. Gerstel, Rajiv R. Ramaswami, Robert R. Ward
  • Patent number: 6947623
    Abstract: Methods, apparatus and systems for regenerating, monitoring and bridging optical signals through an optical cross-connect switch to provide increased reliability. A self testing method, apparatus and system for an optical cross-connect switch. An optical-to-electrical-to-optical converter (O/E/O) is provided in an optical cross-connect switch to provide optical-electrical-optical conversion. I/O port cards having an optical-to-electrical-to-optical converter are referred to as smart port cards while I/O port cards without an optical-to-electrical-to-optical converter are referred to as passive port cards. Test port/monitor cards are also provided for testing optical cross-connect switches. Methods, apparatus and systems for performing bridging, test access, and supporting redundant optical switch fabrics are also disclosed.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: September 20, 2005
    Assignee: Nortel Networks Limited
    Inventors: Rajiv Ramaswami, Robert R. Ward
  • Patent number: 6944364
    Abstract: Methods, apparatus and systems for regenerating, monitoring and bridging optical signals through an optical cross-connect switch to provide increased reliability. A self testing method, apparatus and system for an optical cross-connect switch. An optical-to-electrical-to-optical converter (O/E/O) is provided in an optical cross-connect switch to provide optical-electrical-optical conversion. I/O port cards having an optical-to-electrical-to-optical converter are referred to as smart port cards while I/O port cards without an optical-to-electrical-to-optical converter are referred to as passive port cards. Test port/monitor cards are also provided for testing optical cross-connect switches. Methods, apparatus and systems for performing bridging, test access, and supporting redundant optical switch fabrics are also disclosed.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: September 13, 2005
    Assignee: Nortel Networks Limited
    Inventors: Rajiv Ramaswami, Robert R. Ward
  • Publication number: 20040258408
    Abstract: Methods, apparatus and systems for regenerating, monitoring and bridging optical signals through an optical cross-connect switch to provide increased reliability. A self testing method, apparatus and system for an optical cross-connect switch. An optical-to-electrical-to-optical converter (O/E/O) is provided in an optical cross-connect switch to provide optical-electrical-optical conversion. I/O port cards having an optical-to-electrical-to-optical converter are referred to as smart port cards while I/O port cards without an optical-to-electrical-to-optical converter are referred to as passive port cards. Test port/monitor cards are also provided for testing optical cross-connect switches. Methods, apparatus and systems for performing bridging, test access, and supporting redundant optical switch fabrics are also disclosed.
    Type: Application
    Filed: August 27, 2003
    Publication date: December 23, 2004
    Inventors: Rajiv Ramaswami, Robert R. Ward
  • Patent number: 6813407
    Abstract: Methods, apparatus and systems for regenerating, monitoring and bridging optical signals through an optical cross-connect switch to provide increased reliability. A self testing method, apparatus and system for an optical cross-connect switch. An optical-to-electrical-to-optical converter (O/E/O) is provided in an optical cross-connect switch to provide optical-electrical-optical conversion. I/O port cards having an optical-to-electrical-to-optical converter are referred to as smart port cards while I/O port cards without an optical-to-electrical-to-optical converter are referred to as passive port cards. Test port/monitor cards are also provided for testing optical cross-connect switches. Methods, apparatus and systems for performing bridging, test access, and supporting redundant optical switch fabrics are also disclosed.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: November 2, 2004
    Assignee: Nortel Networks Limited
    Inventors: Rajiv Ramaswami, Robert R. Ward
  • Publication number: 20040085895
    Abstract: A system supports 50 ms protection switching times independent of network architecture. The system includes multiple protection switch fabrics to perform facility protection switching for the signals and a central switch fabric to switch a subset of the signals in a non-facility protection switching manner among the protection switch fabrics. Linear and ring network configurations are supported by the system. The system has flexibility to perform Linear Automatic Protection Switching (LAPS), Unidirection Path Switched Ring (UPSR) protection switching, and Bidirectional Line Switched Ring (BLSR) protection switching without burdening the central switch fabric with unnecessary or redundant traffic.
    Type: Application
    Filed: June 25, 2003
    Publication date: May 6, 2004
    Applicant: Tellabs Operations, Inc.
    Inventors: Chris R. Zettinger, Mark E. Boduch, Robert R. Ward
  • Publication number: 20040076365
    Abstract: Methods, apparatus and systems for regenerating, monitoring and bridging optical signals through an optical cross-connect switch to provide increased reliability. A self testing method, apparatus and system for an optical cross-connect switch. An optical-to-electrical-to-optical converter (O/E/O) is provided in an optical cross-connect switch to provide optical-electrical-optical conversion. I/O port cards having an optical-to-electrical-to-optical converter are referred to as smart port cards while I/O port cards without an optical-to-electrical-to-optical converter are referred to as passive port cards. Test port/monitor cards are also provided for testing optical cross-connect switches. Methods, apparatus and systems for performing bridging, test access, and supporting redundant optical switch fabrics are also disclosed.
    Type: Application
    Filed: August 26, 2003
    Publication date: April 22, 2004
    Inventors: Rajiv Ramaswami, Robert R. Ward
  • Publication number: 20040037553
    Abstract: Methods, apparatus and systems for regenerating, monitoring and bridging optical signals through an optical cross-connect switch to provide increased reliability. A self testing method, apparatus and system for an optical cross-connect switch. An optical-to-electrical-to-optical converter (O/E/O) is provided in an optical cross-connect switch to provide optical-electrical-optical conversion. I/O port cards having an optical-to-electrical-to-optical converter are referred to as smart port cards while I/O port cards without an optical-to-electrical-to-optical converter are referred to as passive port cards. Test port/monitor cards are also provided for testing optical cross-connect switches. Methods, apparatus and systems for performing bridging, test access, and supporting redundant optical switch fabrics are also disclosed.
    Type: Application
    Filed: August 28, 2003
    Publication date: February 26, 2004
    Inventors: Rajiv Ramaswami, Robert R. Ward
  • Patent number: 6650803
    Abstract: Methods, apparatus and systems for regenerating, monitoring and bridging optical signals through an optical cross-connect switch to provide increased reliability. A self testing method, apparatus and system for an optical cross-connect switch. An optical-to-electrical-to-optical converter (O/E/O) is provided in an optical cross-connect switch to provide optical-electrical-optical conversion. I/O port cards having an optical-to-electrical-to-optical converter are referred to as smart port cards while I/O port cards without an optical-to-electrical-to-optical converter are referred to as passive port cards. Test port/monitor cards are also provided for testing optical cross-connect switches. Methods, apparatus and systems for performing bridging, test access, and supporting redundant optical switch fabrics are also disclosed.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: November 18, 2003
    Assignee: XROS, Inc.
    Inventors: Rajiv Ramaswami, Robert R. Ward
  • Patent number: 6597826
    Abstract: In one embodiment, a scalable cross-connect switching system and its corresponding method perform a bridging operation by splitting the incoming light signal into at least a first bridged light signal and a second bridged light signal. The first bridged light signal has a power level equal to or substantially greater than a power level of the second bridged light signal. The disproportionate power levels provide low-loss bridging. Light signals based on these bridged light signals are routed through multiple switch fabrics which provide redundancy in case of failure by switching within the switch fabric. To detect failures, a test access port is configured for monitoring multiple optical paths.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: July 22, 2003
    Assignee: XROS, Inc.
    Inventors: Rajiv Ramaswami, Steven Clark, Robert R. Ward
  • Patent number: 6571030
    Abstract: In general, an optical cross-connect switching system comprising a switch subsystem, an input/output (I/O) subsystem including a plurality of removable, I/O port modules, and a switch control subsystem featuring servo modules. These units collectively operate to provide optical data paths for routing of light signals without conversion from optical to electrical domains and back to optical. Also, the optical cross-connect switching system is scalable because the I/O port modules, servo modules and even features of the switch subsystem may be removed without disruption in system operation.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: May 27, 2003
    Assignee: XROS, Inc.
    Inventors: Rajiv Ramaswami, Steven T. Tabaska, Robert R. Ward
  • Patent number: 4214020
    Abstract: Processes are disclosed for coating the exteriors of a plurality of hollow fibers which are suitable for fluid separations and which are assembled in the form of a bundle. The processes involve immersing the bundle of hollow fibers in a coating liquid containing material suitable for forming the coating and a substantial amount of solvent. A pressure drop from the exteriors to the interiors of the hollow fibers is provided to result in the formation of a deposit on the exteriors of the hollow fibers. The processes of this invention enable essentially the entire exterior surfaces of the hollow fibers to be coated without undue sticking of the hollow fibers or providing undesirably thick coatings on the hollow fibers in any portion of the bundle or on a portion of any of the hollow fibers.
    Type: Grant
    Filed: November 17, 1977
    Date of Patent: July 22, 1980
    Assignee: Monsanto Company
    Inventors: Robert R. Ward, Richard C. Chang, James C. Danos, Joseph A. Carden, Jr.
  • Patent number: 4157960
    Abstract: The selectivities of fluid separations of membranes having pores, in which the material of the membranes significantly effects the fluid separations, can be enhanced by the storage of the membranes in water. Suitable materials of the membranes for improvement in accordance with this invention are those which are not unduly susceptible to biodegradation. The membranes for improvement in accordance with this invention preferably have structures which are not unduly affected by drying and thus maintain beneficial mechanical and fluid separation properties after drying.
    Type: Grant
    Filed: November 30, 1977
    Date of Patent: June 12, 1979
    Assignee: Monsanto Company
    Inventors: Richard C. Chang, Robert R. Ward