Patents by Inventor Robert Ray Naish

Robert Ray Naish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7149238
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: December 12, 2006
    Assignee: Cingular Wireless II, LLC
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnic Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Patent number: 7106781
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: September 12, 2006
    Assignee: Cingular Wireless II, LLC
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Patent number: 6621851
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: September 16, 2003
    Assignee: AT&T Wireless Services, Inc.
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Publication number: 20020122465
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.
    Type: Application
    Filed: August 3, 2001
    Publication date: September 5, 2002
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Patent number: 6359923
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective rev transmission systems that adapt or can be adapted to the radio environment.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: March 19, 2002
    Assignee: AT&T Wireless Services, Inc.
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson