Patents by Inventor Robert Rosenbluth

Robert Rosenbluth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10907283
    Abstract: Methods of braiding using a braiding mechanism are described. The braiding machine includes first and second annular members, the second annular member being concentric with the first annular member. A mandrel extends perpendicularly to and intersects a horizontal plane defined by a substantially circular region of the second annular member substantially at the center of the circular region. Each of the annular members has a plurality of tubular guide wires slideably mounted thereon and a plurality of wires extend from the mandrel through each of the tubular wire guides. The first annular member rotates circumferentially relative to the second annular member. The first plurality of tubular wire guides slides radially inward to align with the second annular member, and the second plurality of tubular wire guides slides radially outward so as to align with the first annular member.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: February 2, 2021
    Assignee: SEQUENT MEDICAL, INC.
    Inventors: James M Thompson, Brian J Cox, Robert Rosenbluth, Philippe Marchand, John Nolting, Darrin J Kent, Tan Q Dinh, Hung P Tran, James A Milburn
  • Publication number: 20200261098
    Abstract: A vascular occlusion device includes a braided filament mesh structure defining a longitudinal axis. The mesh structure has a relaxed configuration in which it has an axial array of radially-extending occlusion regions, each of which has a proximal side and a distal side meeting at a peripheral edge, the sides of each occlusion region forming a first angle relative to the longitudinal axis. Each occlusion region is axially separated from the adjacent occlusion region by a reduced-diameter connecting region. The mesh structure is radially compressible to a compressed state in which it is deployed intravascularly to a target site through a catheter. Upon deployment, the device radially expands to a constrained configuration in which the peripheral edges of the occlusion regions engage the vascular wall, and the sides of the occlusion regions form a second angle relative to the longitudinal axis that is smaller than the first angle.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 20, 2020
    Inventors: Paul Lubock, Richard Quick, Robert Rosenbluth, Brian J. Cox
  • Patent number: 10660648
    Abstract: A vascular occlusion device includes a braided filament mesh structure defining a longitudinal axis. The mesh structure has a relaxed configuration in which it has an axial array of radially-extending occlusion regions, each of which has a proximal side and a distal side meeting at a peripheral edge, the sides of each occlusion region forming a first angle relative to the longitudinal axis. Each occlusion region is axially separated from the adjacent occlusion region by a reduced-diameter connecting region. The mesh structure is radially compressible to a compressed state in which it is deployed intravascularly to a target site through a catheter. Upon deployment, the device radially expands to a constrained configuration in which the peripheral edges of the occlusion regions engage the vascular wall, and the sides of the occlusion regions form a second angle relative to the longitudinal axis that is smaller than the first angle.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: May 26, 2020
    Assignee: Inceptus Medical, LLC
    Inventors: Paul Lubock, Richard Quick, Robert Rosenbluth, Brian J. Cox
  • Publication number: 20190307464
    Abstract: A vascular occlusion device includes a braided filament mesh structure defining a longitudinal axis. The mesh structure has a relaxed configuration in which it has an axial array of radially-extending occlusion regions, each of which has a proximal side and a distal side meeting at a peripheral edge, the sides of each occlusion region forming a first angle relative to the longitudinal axis. Each occlusion region is axially separated from the adjacent occlusion region by a reduced-diameter connecting region. The mesh structure is radially compressible to a compressed state in which it is deployed intravascularly to a target site through a catheter. Upon deployment, the device radially expands to a constrained configuration in which the peripheral edges of the occlusion regions engage the vascular wall, and the sides of the occlusion regions form a second angle relative to the longitudinal axis that is smaller than the first angle.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventors: Paul Lubock, Richard Quick, Robert Rosenbluth, Brian J. Cox
  • Patent number: 10376267
    Abstract: A vascular occlusion device includes a braided filament mesh structure defining a longitudinal axis. The mesh structure has a relaxed configuration in which it has an axial array of radially-extending occlusion regions, each of which has a proximal side and a distal side meeting at a peripheral edge, the sides of each occlusion region forming a first angle relative to the longitudinal axis. Each occlusion region is axially separated from the adjacent occlusion region by a reduced-diameter connecting region. The mesh structure is radially compressible to a compressed state in which it is deployed intravascularly to a target site through a catheter. Upon deployment, the device radially expands to a constrained configuration in which the peripheral edges of the occlusion regions engage the vascular wall, and the sides of the occlusion regions form a second angle relative to the longitudinal axis that is smaller than the first angle.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: August 13, 2019
    Assignee: Inceptus Medical, LLC
    Inventors: Paul Lubock, Richard Quick, Robert Rosenbluth, Brian J. Cox
  • Publication number: 20190218696
    Abstract: Methods of braiding using a braiding mechanism are described. The braiding machine includes first and second annular members, the second annular member being concentric with the first annular member. A mandrel extends perpendicularly to and intersects a horizontal plane defined by a substantially circular region of the second annular member substantially at the center of the circular region. Each of the annular members has a plurality of tubular guide wires slideably mounted thereon and a plurality of wires extend from the mandrel through each of the tubular wire guides. The first annular member rotates circumferentially relative to the second annular member. The first plurality of tubular wire guides slides radially inward to align with the second annular member, and the second plurality of tubular wire guides slides radially outward so as to align with the first annular member.
    Type: Application
    Filed: February 27, 2019
    Publication date: July 18, 2019
    Applicant: SEQUENT MEDICAL, INC.
    Inventors: James M. Thompson, Brian J. Cox, Robert Rosenbluth, Philippe Marchand, John Nolting, Darrin J. Kent, Tan Q. Dinh, Hung P. Tran, James A. Milburn
  • Publication number: 20190150959
    Abstract: A device and method for intravascular treatment of an embolism, and particularly a pulmonary embolism, is disclosed herein. One aspect of the present technology, for example, is directed toward a clot treatment device that includes a support member having a plurality of first clot engagement members and second clot engagement members positioned about the circumference of a distal portion of the support member. In an undeployed state, individual first clot engagement members can be linear and have a first length, and individual second clot engagement members can be linear and have a second length that is less than the first length. The clot engagement members can be configured to penetrate clot material along an arcuate path and hold clot material to the clot treatment device.
    Type: Application
    Filed: December 18, 2018
    Publication date: May 23, 2019
    Inventors: Brian J. Cox, Paul Lubock, Robert Rosenbluth, Richard Quick, Philippe Marchand
  • Patent number: 10260182
    Abstract: Methods of braiding using a braiding mechanism are described. The braiding mechanism includes a circular array of filament engagement elements, a mandrel extending from the center of the circular array, a plurality of actuators disposed operably about the circular array, and a rotating mechanism adapted to rotate one or more filaments. The circular array of filament engagement elements and the plurality of actuators are configured to move relative to one another. The plurality of filaments are loaded onto the mandrel and extend radially toward and contact the circumferential edge of the circular array of filament engagement elements. The plurality of actuators are operated to engage a first subset of the plurality of filaments and move the engaged filaments in a generally radial direction to a position beyond the circumferential edge of the circular array. The rotating mechanism is operated to move the engaged filaments about the mandrel axis.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: April 16, 2019
    Assignee: Sequent Medical, Inc.
    Inventors: James M Thompson, Brian J Cox, Robert Rosenbluth, Philippe Marchand, John Nolting, Darrin J Kent, Tan Q Dinh, Hung P Tran, James A Milburn
  • Patent number: 10238406
    Abstract: A device and method for intravascular treatment of an embolism, and particularly a pulmonary embolism, is disclosed herein. One aspect of the present technology, for example, is directed toward a clot treatment device that includes a support member having a plurality of first clot engagement members and second clot engagement members positioned about the circumference of a distal portion of the support member. In an undeployed state, individual first clot engagement members can be linear and have a first length, and individual second clot engagement members can be linear and have a second length that is less than the first length. The clot engagement members can be configured to penetrate clot material along an arcuate path and hold clot material to the clot treatment device.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: March 26, 2019
    Assignee: Inari Medical, Inc.
    Inventors: Brian J. Cox, Paul Lubock, Robert Rosenbluth, Richard Quick, Philippe Marchand
  • Publication number: 20180303486
    Abstract: An occlusion device including a tubular braided member having a first end and a second end and extending along a longitudinal axis, the tubular braided member having a repeating pattern of larger diameter portions and smaller diameter portions arrayed along the longitudinal axis, and at least one metallic coil member extending coaxially along at least a portion of the braided member, the at least one metallic coil member having an outer diameter and an inner diameter, wherein the smaller diameter portions of the tubular braided member have an outer diameter and an inner diameter, and wherein at least one of the outer diameter and inner diameter of the tubular braided member is configured to closely match a directly opposing diameter of the metallic coil member.
    Type: Application
    Filed: November 22, 2017
    Publication date: October 25, 2018
    Applicant: Sequent Medical, Inc.
    Inventors: Robert Rosenbluth, Brian J. Cox, William R. Patterson
  • Publication number: 20180242980
    Abstract: A vascular occlusion device includes a braided filament mesh structure defining a longitudinal axis. The mesh structure has a relaxed configuration in which it has an axial array of radially-extending occlusion regions, each of which has a proximal side and a distal side meeting at a peripheral edge, the sides of each occlusion region forming a first angle relative to the longitudinal axis. Each occlusion region is axially separated from the adjacent occlusion region by a reduced-diameter connecting region. The mesh structure is radially compressible to a compressed state in which it is deployed intravascularly to a target site through a catheter. Upon deployment, the device radially expands to a constrained configuration in which the peripheral edges of the occlusion regions engage the vascular wall, and the sides of the occlusion regions form a second angle relative to the longitudinal axis that is smaller than the first angle.
    Type: Application
    Filed: February 23, 2018
    Publication date: August 30, 2018
    Applicant: Inceptus Medical LLC
    Inventors: Paul Lubock, Richard Quick, Robert Rosenbluth, Brian J. Cox
  • Patent number: 10004531
    Abstract: A method and apparatus for treating a clot in the blood vessel of a patient, and particularly the treatment of a pulmonary embolism is disclosed. The treatment includes restoring flow through the clot followed by clot removal, either partially or substantially completely. The clot treatment device is expandable into the blood vessel and may contain radial extensions that assist in restoring flow as well as in removing clot material.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: June 26, 2018
    Assignee: Inari Medical, Inc.
    Inventors: Robert Rosenbluth, Brian J. Cox, Paul Lubock, Richard Quick
  • Publication number: 20170088988
    Abstract: Methods of braiding using a braiding mechanism are described. The braiding mechanism includes a circular array of filament engagement elements, a mandrel extending from the center of the circular array, a plurality of actuators disposed operably about the circular array, and a rotating mechanism adapted to rotate one or more filaments. The circular array of filament engagement elements and the plurality of actuators are configured to move relative to one another. The plurality of filaments are loaded onto the mandrel and extend radially toward and contact the circumferential edge of the circular array of filament engagement elements. The plurality of actuators are operated to engage a first subset of the plurality of filaments and move the engaged filaments in a generally radial direction to a position beyond the circumferential edge of the circular array. The rotating mechanism is operated to move the engaged filaments about the mandrel axis.
    Type: Application
    Filed: December 13, 2016
    Publication date: March 30, 2017
    Applicant: SEQUENT MEDICAL, INC.
    Inventors: JAMES M THOMPSON, BRIAN J COX, ROBERT ROSENBLUTH, PHILIPPE MARCHAND, JOHN NOLTING, DARRIN J KENT, TAN Q DINH, HUNG P TRAN, JAMES A MILBURN
  • Patent number: 9528205
    Abstract: A braiding machine and methods of braiding are described. The braiding machine includes first and second annular members having inclined surfaces, the second annular member being concentric with the first annular member. The inclined surfaces are inclined at a non-zero angle formed between an axis of the outer ring and a horizontal axis that lies perpendicular to the longitudinal axis of the mandrel. Each of the annular members has a plurality of tubular guide wires slideably mounted thereon and a plurality of wires extend from the mandrel through each of the tubular wire guides. One of the first and second annular members rotates circumferentially relative to the other. The first plurality of tubular wire guides slides radially inward so as to align with the second annular member, and the second plurality of tubular wire guides slides radially outward so as to align with the first annular member.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: December 27, 2016
    Assignee: Sequent Medical, Inc
    Inventors: James M Thompson, Brian J Cox, Robert Rosenbluth, Philippe Marchand, John Nolting, Darrin J Kent, Tan Q Dinh, Hung P Tran, James A Milburn
  • Publication number: 20160287276
    Abstract: A device and method for intravascular treatment of an embolism, and particularly a pulmonary embolism, is disclosed herein. One aspect of the present technology, for example, is directed toward a clot treatment device that includes a support member having a plurality of first clot engagement members and second clot engagement members positioned about the circumference of a distal portion of the support member. In an undeployed state, individual first clot engagement members can be linear and have a first length, and individual second clot engagement members can be linear and have a second length that is less than the first length. The clot engagement members can be configured to penetrate clot material along an arcuate path and hold clot material to the clot treatment device.
    Type: Application
    Filed: October 21, 2014
    Publication date: October 6, 2016
    Inventors: Brian J. Cox, Paul Lubock, Robert Rosenbluth, Richard Quick, Philippe Marchand
  • Publication number: 20160143721
    Abstract: A device and method for intravascular treatment of an embolism is disclosed herein. One aspect of the present technology, for example, is directed toward a clot treatment device that includes a support member configured to extend through a delivery catheter and a plurality of clot engagement members positioned about the circumference of a distal portion of the support member. The clot engagement members can be configured to penetrate clot material along an arcuate path and mechanically macerate clot and release embolic particles when re-sheathed into the delivery catheter.
    Type: Application
    Filed: July 14, 2014
    Publication date: May 26, 2016
    Inventors: Robert Rosenbluth, Paul Lubock, Brian J. Cox, Richard Quick
  • Publication number: 20160045201
    Abstract: A blood flow disruption device for embolizing blood flowing into a vascular defect between a proximal vascular segment and a distal vascular segment, wherein the device includes a porous inner flow disruption element configured to extend through the defect between the proximal vascular segment and the distal vascular segment, whereby a first portion of the blood flowing into the inner flow disruption element from the proximal vascular segment is directed to flow into the defect and a second portion of the blood flowing into the inner flow disruption element is directed to flow into the distal vascular segment. A porous outer flow disruption element coaxially surrounds the inner flow disruption element and is radially expansible from a collapsed state to an expanded state. The outer flow disruption element, in its expanded state, promotes sufficient hemostasis of the first portion of the blood within the defect to embolize the defect.
    Type: Application
    Filed: October 29, 2015
    Publication date: February 18, 2016
    Applicant: Sequent Medical, Inc.
    Inventors: Robert Rosenbluth, Brian J. Cox
  • Publication number: 20150305756
    Abstract: A method and apparatus for treating a clot in the blood vessel of a patient, and particularly the treatment of a pulmonary embolism is disclosed. The treatment includes restoring flow through the clot followed by clot removal, either partially or substantially completely. The clot treatment device is expandable into the blood vessel and may contain radial extensions that assist in restoring flow as well as in removing clot material.
    Type: Application
    Filed: November 20, 2013
    Publication date: October 29, 2015
    Inventors: Robert ROSENBLUTH, Brian J. COX, Paul LUBOCK, Richard QUICK
  • Publication number: 20150133989
    Abstract: An occlusion device and method for occluding an undesirable vascular structure, such as a septal defect or left atrial appendage. The occlusion device includes a lattice structure that expands from a contracted catheter-deliverable state to an expanded state that occludes the vascular structure. The lattice structure has one or more braided layers, with structural braided layers that provide structural support to the device, and occlusive layers that provide a lattice braiding or pore sizes that promote further occlusion by a biological process, such as tissue ingrowth that further occludes the affected vascular structure.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 14, 2015
    Inventors: Paul Lubock, Brian J. Cox, Robert Rosenbluth, Richard Quick
  • Publication number: 20150005811
    Abstract: Devices and methods for occluding the left atrial appendage are disclosed herein. An occlusion device can include an expandable lattice structure having a proximal portion configured to be positioned at or near the ostium of the LAA, a distal portion configured to extend into an interior portion of the LAA, and a contact portion between the proximal and distal portions. In several embodiments, the expandable lattice structure includes an occlusive braid configured to contact and seal with tissue of the LAA and a structural braid enveloped by the occlusive braid. The structural braid can be coupled to the occlusive braid at a proximal hub located at the proximal portion of the lattice structure. The structural braid is configured to drive the occlusive braid radially outward. The occlusive braid can have an atrial face at the proximal portion facing the left atrium LA, and the atrial face can have a low-profile contour that mitigates thrombus formation at the atrial face.
    Type: Application
    Filed: January 4, 2013
    Publication date: January 1, 2015
    Inventors: Paul Lubock, Brian J. Cox, Robert Rosenbluth, Richard Quick, Michael J. Rosenbluth