Patents by Inventor Robert Routh

Robert Routh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11935838
    Abstract: A method of forming alignment marks includes providing a III-V compound substrate having a device region and an alignment mark region, forming a hardmask layer having a first set of openings on the alignment mark region exposing a first surface portion of the III-V compound substrate and a second set of openings on the device region exposing a second surface portion of the III-V compound substrate, etching the exposed surface of the III-V compound substrate using the hardmask layer as a mask to form a plurality of trenches, and epitaxially regrowing a semiconductor layer in the trenches to form the alignment marks extending to a predetermined height over the processing surface of the III-V compound substrate.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: March 19, 2024
    Assignee: Nexgen Power Systems, Inc.
    Inventors: Clifford Drowley, Ray Milano, Robert Routh, Subhash Srinivas Pidaparthi, Andrew P. Edwards
  • Publication number: 20240071720
    Abstract: Method and system for sample preparation includes positioning an extraneous specimen close to a target specimen in a vacuum chamber, directing a charged particle beam towards the extraneous specimen while flowing a precursor gas in the vacuum chamber, and depositing or etching on one or more surfaces of the target specimen with the assist of the precursor gas.
    Type: Application
    Filed: August 11, 2023
    Publication date: February 29, 2024
    Applicant: FEI Company
    Inventors: Jamie Dee Gravell, Brian Roberts Routh, Aurelien Philippe Jean Maclou Botman, Subhei Shaar
  • Patent number: 11798804
    Abstract: A method and apparatus for material deposition onto a sample to form a protective layer composed of at least two materials that have been formulated and arranged according to the material properties of the sample.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: October 24, 2023
    Assignee: FEI Company
    Inventors: Brian Roberts Routh, Thomas G. Miller, Chad Rue, Noel Thomas Franco
  • Patent number: 11550433
    Abstract: A touch sensor having conductive circuits on both surfaces of a substrate is fabricated by including UV-blocking material into the substrate or depositing UV-blocking layer on the substrate. This can be used for fabricating sensors having transparent conductor circuits, or having metallic circuits, which are opaque to visible light. Photoresist is applied to both surfaces of the substrate and patterns are transferred to the photoresist by exposure to UV radiation. The UV-blocking layer prevents UV-radiation applied to one side from exposing the opposite side. If desired, both photoresist layers may be exposed simultaneously by splitting one UV beam.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: January 10, 2023
    Assignee: FUTURETECH CAPITAL, INC.
    Inventors: Robert Petcavich, Robert Routh, Michael Morrione
  • Patent number: 11449159
    Abstract: Light reflection from a metal mesh touch sensor is reduced or prevented by encasing the metal lines with a passivation coating and including non-reflective nanoparticles in the patterning photoresist. The photoresist is mixed with catalytic nanoparticles wherein the nanoparticles are formed to minimize light reflection. The nanoparticles may be carbon coated metallic particles, or uncoated palladium nanoparticles. Also, a standoff photoresist layer may be included between the substrate and the photoresist composition to prevent reflection from the edges of the metallic lines.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: September 20, 2022
    Assignee: FUTURETECH CAPITAL, INC.
    Inventors: Robert Petcavich, Michael Morrione, Robert Routh
  • Publication number: 20220293530
    Abstract: A method of forming alignment marks includes providing a III-V compound substrate having a device region and an alignment mark region, forming a hardmask layer having a first set of openings on the alignment mark region exposing a first surface portion of the III-V compound substrate and a second set of openings on the device region exposing a second surface portion of the III-V compound substrate, etching the exposed surface of the III-V compound substrate using the hardmask layer as a mask to form a plurality of trenches, and epitaxially regrowing a semiconductor layer in the trenches to form the alignment marks extending to a predetermined height over the processing surface of the III-V compound substrate.
    Type: Application
    Filed: March 29, 2022
    Publication date: September 15, 2022
    Applicant: NexGen Power Systems, Inc.
    Inventors: Clifford Drowley, Ray Milano, Robert Routh, Subhash Srinivas Pidaparthi, Andrew P. Edwards
  • Patent number: 11315884
    Abstract: A method of forming alignment marks includes providing a III-V compound substrate having a device region and an alignment mark region, forming a hardmask layer having a first set of openings on the alignment mark region exposing a first surface portion of the III-V compound substrate and a second set of openings on the device region exposing a second surface portion of the III-V compound substrate, etching the exposed surface of the III-V compound substrate using the hardmask layer as a mask to form a plurality of trenches, and epitaxially regrowing a semiconductor layer in the trenches to form the alignment marks extending to a predetermined height over the processing surface of the III-V compound substrate.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: April 26, 2022
    Assignee: NEXGEN POWER SYSTEMS, INC.
    Inventors: Clifford Drowley, Ray Milano, Robert Routh, Subhash Srinivas Pidaparthi, Andrew P. Edwards
  • Patent number: 11261529
    Abstract: A method for fabricating a metallic wire mesh touch sensor with reduced visibility. A metallic wire mesh is formed on a transparent substrate such that the surface of the metallic wires is roughened or textured, so as to cause high scattering of incident light, thereby minimizing specularly reflected light towards the user. The metal lines are formed over patterned catalytic photoresist. The rough or textured surface of the metallic wires is achieved by roughening or texturing the catalytic photoresist, by selecting parameters of electronless plating of copper, or both. An RMS surface roughness of about 50 nm would scatter approximately 70% of incident cyan light incident at 30°.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: March 1, 2022
    Assignee: FUTURETECH CAPITAL, INC.
    Inventors: Robert Routh, Michael Morrione, Jeffrey Hawthorne
  • Patent number: 11209923
    Abstract: Touchscreen, comprising: a display device; a touch sensor over the display device; and, a cover lens; wherein the touch sensor comprises: a transparent substrate; a layer of catalytic photoresist patterns of a catalytic photoresist composition, the catalytic photoresist composition including a photoresist and catalytic nanoparticles; a metal conductive layer with conductive patterns over the layer of catalytic photoresist patterns; a metal passivation layer over the metal layer; and a transparent protective layer over the metal passivation layer.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: December 28, 2021
    Assignee: FUTURETECH CAPITAL, INC.
    Inventors: Robert Routh, Michael Morrione
  • Publication number: 20210342026
    Abstract: Touchscreen, comprising: a display device; a touch sensor over the display device; and, a cover lens; wherein the touch sensor comprises: a transparent substrate; a layer of catalytic photoresist patterns of a catalytic photoresist composition, the catalytic photoresist composition including a photoresist and catalytic nanoparticles; a metal conductive layer with conductive patterns over the layer of catalytic photoresist patterns; a metal passivation layer over the metal layer; and a transparent protective layer over the metal passivation layer.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 4, 2021
    Inventors: Robert Routh, Michael Morrione
  • Publication number: 20210318769
    Abstract: A touch sensor having conductive circuits on both surfaces of a substrate is fabricated by including UV-blocking material into the substrate or depositing UV-blocking layer on the substrate. This can be used for fabricating sensors having transparent conductor circuits, or having metallic circuits, which are opaque to visible light. Photoresist is applied to both surfaces of the substrate and patterns are transferred to the photoresist by exposure to UV radiation. The UV-blocking layer prevents UV-radiation applied to one side from exposing the opposite side. If desired, both photoresist layers may be exposed simultaneously by splitting one UV beam.
    Type: Application
    Filed: April 14, 2020
    Publication date: October 14, 2021
    Inventors: Robert Petcavich, Robert Routh, Michael Morrione
  • Publication number: 20210301403
    Abstract: A method for fabricating a metallic wire mesh touch sensor with reduced visibility. A metallic wire mesh is formed on a transparent substrate such that the surface of the metallic wires is roughened or textured, so as to cause high scattering of incident light, thereby minimizing specularly reflected light towards the user. The metal lines are formed over patterned catalytic photoresist. The rough or textured surface of the metallic wires is achieved by roughening or texturing the catalytic photoresist, by selecting parameters of electronless plating of copper, or both. An RMS surface roughness of about 50 nm would scatter approximately 70% of incident cyan light incident at 30°.
    Type: Application
    Filed: March 31, 2020
    Publication date: September 30, 2021
    Inventors: Robert Routh, Michael Morrione, Jeffrey Hawthorne
  • Patent number: 11069523
    Abstract: A method and apparatus for material deposition onto a sample to form a protective layer composed of at least two materials that have been formulated and arranged according to the material properties of the sample.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: July 20, 2021
    Assignee: FEI Company
    Inventors: Brian Roberts Routh, Jr., Thomas G. Miller, Chad Rue, Noel Thomas Franco
  • Publication number: 20210141470
    Abstract: Light reflection from a metal mesh touch sensor is reduced or prevented by encasing the metal lines with a passivation coating and including non-reflective nanoparticles in the patterning photoresist. The photoresist is mixed with catalytic nanoparticles wherein the nanoparticles are formed to minimize light reflection. The nanoparticles may be carbon coated metallic particles, or uncoated palladium nanoparticles. Also, a standoff photoresist layer may be included between the substrate and the photoresist composition to prevent reflection from the edges of the metallic lines.
    Type: Application
    Filed: March 30, 2020
    Publication date: May 13, 2021
    Inventors: Robert Petcavich, Michael Morrione, Robert Routh
  • Publication number: 20210118678
    Abstract: A method and apparatus for material deposition onto a sample to form a protective layer composed of at least two materials that have been formulated and arranged according to the material properties of the sample.
    Type: Application
    Filed: December 9, 2020
    Publication date: April 22, 2021
    Applicant: FEI Company
    Inventors: Brian Roberts Routh, Thomas G. Miller, Chad Rue, Noel Thomas Franco
  • Publication number: 20210020580
    Abstract: A method of forming alignment marks includes providing a III-V compound substrate having a device region and an alignment mark region, forming a hardmask layer having a first set of openings on the alignment mark region exposing a first surface portion of the III-V compound substrate and a second set of openings on the device region exposing a second surface portion of the III-V compound substrate, etching the exposed surface of the III-V compound substrate using the hardmask layer as a mask to form a plurality of trenches, and epitaxially regrowing a semiconductor layer in the trenches to form the alignment marks extending to a predetermined height over the processing surface of the III-V compound substrate.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 21, 2021
    Inventors: Clifford Drowley, Ray Milano, Robert Routh, Subhash Pidaparthi, Andrew Edwards
  • Patent number: 10825651
    Abstract: Techniques are described that facilitate automated extraction of lamellae and attaching the lamellae to sample grids for viewing on transmission electron microscopes. Some embodiments of the invention involve the use of machine vision to determine the positions of the lamella, the probe, and/or the TEM grid to guide the attachment of the probe to the lamella and the attachment of the lamella to the TEM grid. Techniques that facilitate the use of machine vision include shaping a probe tip so that its position can be readily recognized by image recognition software. Image subtraction techniques can be used to determine the position of the lamellae attached to the probe for moving the lamella to the TEM grid for attachment. In some embodiments, reference structures are milled on the probe or on the lamella to facilitate image recognition.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: November 3, 2020
    Assignee: FEI Company
    Inventors: Valerie Brogden, Jeffrey Blackwood, Michael Schmidt, Dhruti Trivedi, Richard J. Young, Thomas G. Miller, Brian Roberts Routh, Jr., Stacey Stone, Todd Templeton
  • Publication number: 20190272975
    Abstract: Techniques are described that facilitate automated extraction of lamellae and attaching the lamellae to sample grids for viewing on transmission electron microscopes. Some embodiments of the invention involve the use of machine vision to determine the positions of the lamella, the probe, and/or the TEM grid to guide the attachment of the probe to the lamella and the attachment of the lamella to the TEM grid. Techniques that facilitate the use of machine vision include shaping a probe tip so that its position can be readily recognized by image recognition software. Image subtraction techniques can be used to determine the position of the lamellae attached to the probe for moving the lamella to the TEM grid for attachment. In some embodiments, reference structures are milled on the probe or on the lamella to facilitate image recognition.
    Type: Application
    Filed: May 13, 2019
    Publication date: September 5, 2019
    Applicant: FEI Company
    Inventors: Valerie Brogden, Jeffrey Blackwood, Michael Schmidt, Dhruti Trivedi, Richard J. Young, Thomas G. Miller, Brian Roberts Routh, JR., Stacey Stone, Todd Templeton
  • Patent number: 10340119
    Abstract: Techniques are described that facilitate automated extraction of lamellae and attaching the lamellae to sample grids for viewing on transmission electron microscopes. Some embodiments of the invention involve the use of machine vision to determine the positions of the lamella, the probe, and/or the TEM grid to guide the attachment of the probe to the lamella and the attachment of the lamella to the TEM grid. Techniques that facilitate the use of machine vision include shaping a probe tip so that its position can be readily recognized by image recognition software. Image subtraction techniques can be used to determine the position of the lamellae attached to the probe for moving the lamella to the TEM grid for attachment. In some embodiments, reference structures are milled on the probe or on the lamella to facilitate image recognition.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: July 2, 2019
    Assignee: FEI Company
    Inventors: Valerie Brogden, Jeffrey Blackwood, Michael Schmidt, Dhruti Trivedi, Richard J. Young, Thomas G. Miller, Brian Roberts Routh, Jr., Stacey Stone, Todd Templeton
  • Publication number: 20180277361
    Abstract: A method and apparatus for material deposition onto a sample to form a protective layer composed of at least two materials that have been formulated and arranged according to the material properties of the sample.
    Type: Application
    Filed: May 21, 2018
    Publication date: September 27, 2018
    Applicant: FEI Company
    Inventors: Brian Roberts Routh, JR., Thomas G. Miller, Chad Rue, Noel Thomas Franco