Patents by Inventor Robert Rozbicki
Robert Rozbicki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250023222Abstract: Antenna systems for controlled coverage in buildings are disclosed where a data communications network in a building includes one or more external antennas. At least one of the external antennas is disposed on a roof or exterior of the building disposed in or associated with a window, a sky sensor or a digital architectural element. The one or more external antennas are coupled to a network infrastructure of the building via one or more data carrying lines and/or wireless links and are configured for communication with an external wireless network. The network infrastructure includes one or more data carrying lines, one or more network switches, and at least one control panel. In some embodiments, at least one of the external antennas is configured for communication with an external wireless network.Type: ApplicationFiled: August 7, 2024Publication date: January 16, 2025Inventors: Stephen Clark Brown, John R. Sanford, Erich Robert Klawuhn, Dhairya Shrivastava, Robert Tad Rozbicki, Daniel Loy Purdy, Todd Daniel Antes, Todd Sean Gray
-
Publication number: 20240263294Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: ApplicationFiled: April 17, 2024Publication date: August 8, 2024Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Patent number: 12043890Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: GrantFiled: October 28, 2022Date of Patent: July 23, 2024Assignee: View, Inc.Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Patent number: 11898233Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: GrantFiled: August 17, 2021Date of Patent: February 13, 2024Assignee: View, Inc.Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Publication number: 20230074776Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: ApplicationFiled: October 28, 2022Publication date: March 9, 2023Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Patent number: 11525181Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: GrantFiled: January 28, 2020Date of Patent: December 13, 2022Assignee: View, Inc.Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Publication number: 20210373401Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: ApplicationFiled: August 17, 2021Publication date: December 2, 2021Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Publication number: 20200166817Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: ApplicationFiled: January 28, 2020Publication date: May 28, 2020Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Patent number: 10591797Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: GrantFiled: October 27, 2017Date of Patent: March 17, 2020Assignee: View, Inc.Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Patent number: 10288969Abstract: Electrochromic devices and methods may employ the addition of a defect-mitigating insulating layer which prevents electronically conducting layers and/or electrochromically active layers from contacting layers of the opposite polarity and creating a short circuit in regions where defects form. In some embodiments, an encapsulating layer is provided to encapsulate particles and prevent them from ejecting from the device stack and risking a short circuit when subsequent layers are deposited. The insulating layer may have an electronic resistivity of between about 1 and 108 Ohm-cm. In some embodiments, the insulating layer contains one or more of the following metal oxides: aluminum oxide, zinc oxide, tin oxide, silicon aluminum oxide, cerium oxide, tungsten oxide, nickel tungsten oxide, and oxidized indium tin oxide. Carbides, nitrides, oxynitrides, and oxycarbides may also be used.Type: GrantFiled: March 31, 2016Date of Patent: May 14, 2019Assignee: View, Inc.Inventors: Sridhar K. Kailasam, Robin Friedman, Dane Gillaspie, Anshu A. Pradhan, Robert Rozbicki, Disha Mehtani
-
Publication number: 20190107764Abstract: Electrochromic devices and methods may employ the addition of a defect-mitigating insulating layer which prevents electronically conducting layers and/or electrochromically active layers from contacting layers of the opposite polarity and creating a short circuit in regions where defects form. In some embodiments, an encapsulating layer is provided to encapsulate particles and prevent them from ejecting from the device stack and risking a short circuit when subsequent layers are deposited. The insulating layer may have an electronic resistivity of between about 1 and 108 Ohm-cm. In some embodiments, the insulating layer contains one or more of the following metal oxides: aluminum oxide, zinc oxide, tin oxide, silicon aluminum oxide, cerium oxide, tungsten oxide, nickel tungsten oxide, and oxidized indium tin oxide. Carbides, nitrides, oxynitrides, and oxycarbides may also be used.Type: ApplicationFiled: December 4, 2018Publication date: April 11, 2019Inventors: Sridhar K. Kailasam, Robin Friedman, Dane Gillaspie, Anshu A. Pradhan, Robert Rozbicki, Disha Mehtani
-
Patent number: 10088729Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: GrantFiled: March 13, 2017Date of Patent: October 2, 2018Assignee: View, Inc.Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Publication number: 20180052374Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: ApplicationFiled: October 27, 2017Publication date: February 22, 2018Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Patent number: 9720298Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: GrantFiled: August 31, 2015Date of Patent: August 1, 2017Assignee: View, Inc.Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Publication number: 20170184937Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: ApplicationFiled: March 13, 2017Publication date: June 29, 2017Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Patent number: 9664974Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.Type: GrantFiled: December 22, 2009Date of Patent: May 30, 2017Assignee: View, Inc.Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki
-
Patent number: 9477129Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.Type: GrantFiled: November 7, 2014Date of Patent: October 25, 2016Assignee: View, Inc.Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki
-
Patent number: 9229291Abstract: Electrochromic devices and methods may employ the addition of a defect-mitigating insulating layer which prevents electronically conducting layers and/or electrochromically active layers from contacting layers of the opposite polarity and creating a short circuit in regions where defects form. In some embodiments, an encapsulating layer is provided to encapsulate particles and prevent them from ejecting from the device stack and risking a short circuit when subsequent layers are deposited. The insulating layer may have an electronic resistivity of between about 1 and 108 Ohm-cm. In some embodiments, the insulating layer contains one or more of the following metal oxides: aluminum oxide, zinc oxide, tin oxide, silicon aluminum oxide, cerium oxide, tungsten oxide, nickel tungsten oxide, and oxidized indium tin oxide. Carbides, nitrides, oxynitrides, and oxycarbides may also be used.Type: GrantFiled: January 20, 2015Date of Patent: January 5, 2016Assignee: View, Inc.Inventors: Sridhar K. Kailasam, Robin Friedman, Dane Gillaspie, Anshu A. Pradhan, Robert Rozbicki, Disha Mehtani
-
Publication number: 20150370139Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: ApplicationFiled: August 31, 2015Publication date: December 24, 2015Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki
-
Patent number: 9164346Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer, which are in direct contact with one another. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices. In addition to the improved electrochromic devices and methods for fabrication, integrated deposition systems for forming such improved devices are also disclosed.Type: GrantFiled: March 13, 2014Date of Patent: October 20, 2015Assignee: View, Inc.Inventors: Zhongchun Wang, Anshu Pradhan, Robert Rozbicki