Patents by Inventor Robert S. Dubrow

Robert S. Dubrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180022992
    Abstract: The present invention provides methods for hermetically sealing luminescent nanocrystals, as well as compositions and containers comprising hermetically sealed luminescent nanocrystals. By hermetically sealing the luminescent nanocrystals, enhanced lifetime and luminescence can be achieved.
    Type: Application
    Filed: September 5, 2017
    Publication date: January 25, 2018
    Applicant: Nanosys, Inc.
    Inventor: Robert S. DUBROW
  • Patent number: 9804319
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: October 31, 2017
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, William P. Freeman, Ernest Lee, Paul Furuta
  • Patent number: 9753212
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: September 5, 2017
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, William P. Freeman, Ernest Lee, Paul Furuta
  • Patent number: 9677001
    Abstract: The present invention provides light-emitting diode (LED) devices comprises compositions and containers of hermetically sealed luminescent nanocrystals. The present invention also provides displays comprising the LED devices. Suitably, the LED devices are white light LED devices.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: June 13, 2017
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Jian Chen, Veeral D. Hardev, H. Jurgen Hofler, Ernest Lee
  • Publication number: 20160363713
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Application
    Filed: August 23, 2016
    Publication date: December 15, 2016
    Inventors: Robert S. Dubrow, William P. Freeman, Ernest Lee, Paul Furuta
  • Publication number: 20160349428
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Application
    Filed: February 8, 2016
    Publication date: December 1, 2016
    Applicant: Nanosys, Inc.
    Inventors: Robert S. DUBROW, William P. FREEMAN, Ernest LEE, Paul FURUTA
  • Publication number: 20160027966
    Abstract: Embodiments of a quantum dot carrier, a method of making a quantum dot carrier, and a quantum dot enhancement film are described. The quantum dot carrier includes a porous material, a plurality of quantum dots and a dispersing material for dispersing the quantum dots within the porous material. The porous material includes a plurality of pores while the quantum dots are disposed within the plurality of pores.
    Type: Application
    Filed: July 14, 2015
    Publication date: January 28, 2016
    Inventors: Robert S. Dubrow, Paul Furuta
  • Publication number: 20160009988
    Abstract: The present invention provides methods for hermetically sealing luminescent nanocrystals, as well as compositions and containers comprising hermetically scaled luminescent nanocrystals. By hermetically sealing the luminescent nanocrystals, enhanced lifetime and luminescence can be achieved.
    Type: Application
    Filed: September 18, 2015
    Publication date: January 14, 2016
    Applicant: Nanosys, Inc.
    Inventor: Robert S. DUBROW
  • Patent number: 9199842
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 1, 2015
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, William P. Freeman, Ernest Lee, Paul Furuta
  • Publication number: 20150300600
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Application
    Filed: February 3, 2015
    Publication date: October 22, 2015
    Applicant: Nanosys, Inc.
    Inventors: Robert S. DUBROW, William P. Freeman, Ernest Lee, Paul Furuta
  • Patent number: 9139767
    Abstract: The present invention provides methods for hermetically sealing luminescent nanocrystals, as well as compositions and containers comprising hermetically sealed luminescent nanocrystals. By hermetically sealing the luminescent nanocrystals, enhanced lifetime and luminescence can be achieved.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: September 22, 2015
    Assignee: Nanosys, Inc.
    Inventor: Robert S. Dubrow
  • Publication number: 20150259597
    Abstract: The present invention provides light-emitting diode (LED) devices comprises compositions and containers of hermetically sealed luminescent nanocrystals. The present invention also provides displays comprising the LED devices. Suitably, the LED devices are white light LED devices.
    Type: Application
    Filed: February 19, 2015
    Publication date: September 17, 2015
    Applicant: Nanosys, Inc.
    Inventors: Robert S. DUBROW, Jian CHEN, Veeral D. HARDEV, Hans Jurgen HOFLER, Ernest LEE
  • Publication number: 20150166342
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.
    Type: Application
    Filed: November 19, 2014
    Publication date: June 18, 2015
    Applicant: Nanosys, Inc.
    Inventors: Mingjun LIU, Robert S. DUBROW, William P. FREEMAN, Adrienne D. KUCMA, J. Wallace PARCE
  • Publication number: 20150109814
    Abstract: Disclosed teem are display systems comprising light-emitting, diodes (LEDs), suitably blue light LEDs, which demonstrate increased optical power output. In embodiments, the display systems include compositions comprising phosphors, including luminescent nanocrystals.
    Type: Application
    Filed: October 16, 2014
    Publication date: April 23, 2015
    Inventors: Jian CHEN, Robert S. Dubrow, Steven Gensler, Jason Hartlove, Ernest Lee, Robert Edward Wilson
  • Patent number: 8956637
    Abstract: This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates for use in various medical devices, as well as methods and uses for such substrates and medical devices. In one particular embodiment, methods for enhancing cellular functions on a surface of a medical device implant are disclosed which generally comprise providing a medical device implant comprising a plurality of nanofibers (e.g., nanowires) thereon and exposing the medical device implant to cells such as osteoblasts.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: February 17, 2015
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Lawrence A. Bock, R. Hugh Daniels, Veeral D. Hardev, Chunming Niu, Vijendra Sahi
  • Patent number: 8916064
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can be used as refractive index matching components, filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: December 23, 2014
    Assignee: Nanosys, Inc.
    Inventors: Mingjun Liu, Robert S. Dubrow, William P. Freeman, Adrienne D. Kucma, J. Wallace Parce
  • Publication number: 20140178648
    Abstract: The present invention provides methods for hermetically sealing luminescent nanocrystals, as well as compositions and containers comprising hermetically sealed luminescent nanocrystals. By hermetically sealing the luminescent nanocrystals, enhanced lifetime and luminescence can be achieved.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: NANOSYS, INC.
    Inventor: Robert S. Dubrow
  • Patent number: 8749130
    Abstract: The present invention provides matrixes doped with semiconductor nanocrystals. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. The present invention also provides processes for producing matrixes comprising semiconductor nanocrystals.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: June 10, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: J. Wallace Parce, Jian Chen, Robert S. Dubrow, William P. Freeman, Erik C. Scher, Jeffery A. Whiteford
  • Publication number: 20140151600
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can be used as refractive index matching components, filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
    Type: Application
    Filed: November 18, 2013
    Publication date: June 5, 2014
    Applicant: Nanosys, Inc.
    Inventors: Mingjun Liu, Robert S. Dubrow, William P. Freeman, Adrienne D. Kucma, J. Wallace Parce
  • Patent number: 8697471
    Abstract: The present invention provides methods for hermetically sealing luminescent nanocrystals, as well as compositions and containers comprising hermetically sealed luminescent nanocrystals. By hermetically sealing the luminescent nanocrystals, enhanced lifetime and luminescence can be achieved.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: April 15, 2014
    Assignee: Nanosys, Inc.
    Inventor: Robert S. Dubrow