Patents by Inventor Robert S. Guzzon

Robert S. Guzzon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11705970
    Abstract: An optical receiver can implement a transimpedance amplifier (TIA) to process received light using a closed loop optical pre-amplification. The optical receiver can use an average input value of the TIA to control an semiconductor optical amplifier (SOA) or pre-amplification as received average signal varies. The optical receiver can include a gain controller for the TIA that can measure the TIA swing to adjust the gain of the SOA to pre-amplify received light in a closed loop control configuration.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: July 18, 2023
    Assignee: Juniper Networks, Inc.
    Inventors: Robert S. Guzzon, John Garcia, Theodore J. Schmidt
  • Patent number: 11653477
    Abstract: Photonic and electronic integrated circuits can be cooled using variable conductance heat pipes containing a non-condensable gas in addition to a phase-changing working fluid. To package the heat pipe with a subassembly including the integrated circuits in a standard housing providing a heat sink contact area, the heat pipe is oriented, in some embodiments, with its axis between evaporator and condenser ends substantially perpendicular to the direction along which the integrated circuit subassembly is separated from the heat sink contact area, and a portion of the exterior surface of the heat pipe is thermally insulated, with a suitable thermal insulation structure, from the heat sink contact area.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: May 16, 2023
    Assignee: Juniper Networks, Inc.
    Inventors: Roberto Marcoccia, Brian Robert Koch, Theodore J. Schmidt, Christopher Paul Wyland, Robert S. Guzzon, Gregory Alan Fish
  • Patent number: 11546055
    Abstract: An optical transceiver can be calibrated using an internal receiver side eye scan generator, and calibration values (e.g., modulator values) can be stored in memory for recalibration of the optical transceiver. The eye scan generator can receive data from the transmitter portion via an integrated and reconfigurable loopback path. At a later time, different calibration values can be accessed in memory and used to recalibrate the optical transceiver or update the calibrated values using the receive-side eye scan generator operating in loopback mode.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: January 3, 2023
    Assignee: OpenLight Photonics, Inc.
    Inventors: Robert S. Guzzon, Sean P. Woyciehowsky, Roberto Marcoccia, Anand Ramaswamy, John Garcia, Sudharsanan Srinivasan
  • Publication number: 20210399799
    Abstract: An optical transceiver can be calibrated using an internal receiver side eye scan generator, and calibration values (e.g., modulator values) can be stored in memory for recalibration of the optical transceiver. The eye scan generator can receive data from the transmitter portion via an integrated and reconfigurable loopback path. At a later time, different calibration values can be accessed in memory and used to recalibrate the optical transceiver or update the calibrated values using the receive-side eye scan generator operating in loopback mode.
    Type: Application
    Filed: June 15, 2021
    Publication date: December 23, 2021
    Inventors: Robert S. Guzzon, Sean P. Woyciehowsky, Roberto Marcoccia, Anand Ramaswamy, John Garcia, Sudharsanan Srinivasan
  • Publication number: 20210376935
    Abstract: An optical receiver can implement a transimpedance amplifier (TIA) to process received light using a closed loop optical pre-amplification. The optical receiver can use an average input value of the TIA to control an semiconductor optical amplifier (SOA) or pre-amplification as received average signal varies. The optical receiver can include a gain controller for the TIA that can measure the TIA swing to adjust the gain of the SOA to pre-amplify received light in a closed loop control configuration.
    Type: Application
    Filed: June 16, 2021
    Publication date: December 2, 2021
    Inventors: Robert S. Guzzon, John Garcia, Theodore J. Schmidt
  • Publication number: 20210227723
    Abstract: Photonic and electronic integrated circuits can be cooled using variable conductance heat pipes containing a non-condensable gas in addition to a phase-changing working fluid. To package the heat pipe with a subassembly including the integrated circuits in a standard housing providing a heat sink contact area, the heat pipe is oriented, in some embodiments, with its axis between evaporator and condenser ends substantially perpendicular to the direction along which the integrated circuit subassembly is separated from the heat sink contact area, and a portion of the exterior surface of the heat pipe is thermally insulated, with a suitable thermal insulation structure, from the heat sink contact area.
    Type: Application
    Filed: April 2, 2021
    Publication date: July 22, 2021
    Inventors: Roberto Marcoccia, Brian Robert Koch, Theodore J. Schmidt, Christopher Paul Wyland, Robert S. Guzzon, Gregory Alan Fish
  • Patent number: 11070296
    Abstract: An optical receiver can implement a transimpedance amplifier (TIA) to process received light using a closed loop optical pre-amplification. The optical receiver can use an average input value of the TIA to control an semiconductor optical amplifier (SOA) or pre-amplification as received average signal varies. The optical receiver can include a gain controller for the TIA that can measure the TIA swing to adjust the gain of the SOA to pre-amplify received light in a closed loop control configuration.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: July 20, 2021
    Assignee: Juniper Networks, Inc.
    Inventors: Robert S. Guzzon, John Garcia, Theodore J. Schmidt
  • Patent number: 11070288
    Abstract: An optical transceiver can be calibrated using an internal receiver side eye scan generator, and calibration values (e.g., modulator values) can be stored in memory for recalibration of the optical transceiver. The eye scan generator can receive data from the transmitter portion via an integrated and reconfigurable loopback path. At a later time, different calibration values can be accessed in memory and used to recalibrate the optical transceiver or update the calibrated values using the receive-side eye scan generator operating in loopback mode.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: July 20, 2021
    Assignee: Juniper Networks, Inc.
    Inventors: Robert S. Guzzon, Sean P. Woyciehowsky, Roberto Marcoccia, Anand Ramaswamy, John Garcia, Sudharsanan Srinivasan
  • Patent number: 11051431
    Abstract: Photonic and electronic integrated circuits can be cooled using variable conductance heat pipes containing a non-condensable gas in addition to a phase-changing working fluid. To package the heat pipe with a subassembly including the integrated circuits in a standard housing providing a heat sink contact area, the heat pipe is oriented, in some embodiments, with its axis between evaporator and condenser ends substantially perpendicular to the direction along which the integrated circuit subassembly is separated from the heat sink contact area, and a portion of the exterior surface of the heat pipe is thermally insulated, with a suitable thermal insulation structure, from the heat sink contact area.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: June 29, 2021
    Assignee: Juniper Networks, Inc.
    Inventors: Roberto Marcoccia, Brian Robert Koch, Theodore J. Schmidt, Christopher Paul Wyland, Robert S. Guzzon, Gregory Alan Fish
  • Publication number: 20200008321
    Abstract: Photonic and electronic integrated circuits can be cooled using variable conductance heat pipes containing a non-condensable gas in addition to a phase-changing working fluid. To package the heat pipe with a subassembly including the integrated circuits in a standard housing providing a heat sink contact area, the heat pipe is oriented, in some embodiments, with its axis between evaporator and condenser ends substantially perpendicular to the direction along which the integrated circuit subassembly is separated from the heat sink contact area, and a portion of the exterior surface of the heat pipe is thermally insulated, with a suitable thermal insulation structure, from the heat sink contact area.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Roberto Marcoccia, Brian Robert Koch, Theodore J. Schmidt, Christopher Paul Wyland, Robert S. Guzzon, Gregory Alan Fish