Patents by Inventor Robert S. Keynton

Robert S. Keynton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240260955
    Abstract: A trocar site closure clip includes a generally triangular central body, a pair of arms extending from the body, and an elongated support extending from the body between the arms. In use, the clip is advanced into a patient through a trocar, the trocar removed, then the clip partially retracted to engage and pierce the patient's tissue. The biodegradable clip remains in the patient's tissue, at least partially blocking the trocar site, and degrades over time as the patient heals.
    Type: Application
    Filed: April 18, 2024
    Publication date: August 8, 2024
    Applicant: University of Louisville Research Foundation, Inc.
    Inventors: Scott D. Cambron, Daniel S. Metzinger, Robert S. Keynton, Hares A. Patel, Dakota J. Waldecker
  • Patent number: 11986176
    Abstract: A trocar site closure clip includes a generally triangular central body, a pair of arms extending from the body, and an elongated support extending from the body between the arms. In use, the clip is advanced into a patient through a trocar, the trocar removed, then the clip partially retracted to engage and pierce the patients tissue. The biodegradable clip remains in the patients tissue, at least partially blocking the trocar site, and degrades over time as the patient heals.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: May 21, 2024
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Scott D. Cambron, Daniel S. Metzinger, Robert S. Keynton, Hares A. Patel, Dakota J. Waldecker
  • Patent number: 11691016
    Abstract: Patients with spinal cord injuries have benefited from neurostimulation therapy comprising delivery of electrical stimulation to enable or excite neurological responses using an implantable neurostimulator having an electrode array. Dangerous levels of charge are avoided while providing multiple, simultaneous stimulation waveforms by inducing a short in an electrode when a monitored value reaches or exceeds a predetermined threshold.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: July 4, 2023
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Susan J. Harkema, Yangsheng Chen, Claudia Angeli, Douglas J. Jackson, Manikandan Ravi, John Naber, Robert S. Keynton, Thomas Roussel, Saliya Kirigeeganage
  • Patent number: 11534064
    Abstract: Methods for automated segmentation system for retinal blood vessels from optical coherence tomography angiography images include a preprocessing stage, an initial segmentation stage, and a refining stage. Application of machine-learning techniques to segmented images allow for automated diagnosis of retinovascular diseases, such as diabetic retinopathy.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: December 27, 2022
    Assignees: University of Louisville Research Foundation, Inc., University of Massachusetts
    Inventors: Ayman El-Baz, Nabila Eldawi, Shlomit Schaal, Mohammed Elmogy, Harpal Sandhu, Robert S. Keynton, Ahmed Soliman
  • Patent number: 11481905
    Abstract: A method for segmentation of a 3-D medical image uses an adaptive patient-specific atlas and an appearance model for 3-D Optical Coherence Tomography (OCT) data. For segmentation of a medical image of a retina, In order to reconstruct the 3-D patient-specific retinal atlas, a 2-D slice of the 3-D image containing the macula mid-area is segmented first. A 2-D shape prior is built using a series of co-aligned training OCT images. The shape prior is then adapted to the first order appearance and second order spatial interaction MGRF model of the image data to be segmented. Once the macula mid-area is segmented into separate retinal layers this initial slice, the segmented layers' labels and their appearances are used to segment the adjacent slices. This step is iterated until the complete 3-D medical image is segmented.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: October 25, 2022
    Inventors: Ayman S. El-Baz, Ahmed Soliman, Ahmed Eltanboly, Ahmed Sleman, Robert S. Keynton, Harpal Sandhu, Andrew Switala
  • Publication number: 20220254500
    Abstract: Computer-implemented systems and methods for automated diagnosis of diabetic retinopathy apply machine learning techniques to clinical and demographic data combined with optical coherence tomography and optical coherence tomography angiography image data to diagnose and grade diabetic retinopathy.
    Type: Application
    Filed: September 4, 2020
    Publication date: August 11, 2022
    Inventors: AYMAN S. EL-BAZ, HARPAL SANDHU, ROBERT S. KEYNTON
  • Publication number: 20220183973
    Abstract: Provided are methods, compositions, and kits that are useful for long-term stabilization of biospecimens at ambient and elevated temperatures that are resilient to degradation by environmental factors and contaminants In some embodiments, the presently disclosed subject matter can be employed for long-term storage of biospecimens that would typically require low and/or ultra-low storage conditions, but as a consequence of employing the presently disclosed compositions and/or methods, the need for cryo-and/or sub-zero refrigeration is not needed in order to get similar if not superior stability of the biospecimen.
    Type: Application
    Filed: April 13, 2020
    Publication date: June 16, 2022
    Applicant: University of Louisville Research Foundation, Inc.
    Inventors: Gautam Gupta, Robert S. Keynton, Rajat Chauhan, Theodore Kalbfleisch
  • Publication number: 20210228885
    Abstract: Disclosed herein are methods for neurostimulation therapy for spinal cord injury. More particularly, the present invention relates to methods for neurostimulation therapy for spinal cord injury. More particularly, the present invention relates to methods for providing multiple independent, simultaneous waveforms in neurostimulation therapy while minimizing or substantially eliminating undesirable interactions between the waveforms.
    Type: Application
    Filed: April 14, 2021
    Publication date: July 29, 2021
    Applicant: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Susan J. Harkema, Yangshen Chen, Robert S. Keynton, Douglas J. Jackson, John Naber, Thomas Roussel, Manikandan Ravi
  • Publication number: 20210228884
    Abstract: Patients with spinal cord injuries have benefited from neurostimulation therapy comprising delivery of electrical stimulation to enable or excite neurological responses using an implantable neurostimulator having an electrode array. Dangerous levels of charge are avoided while providing multiple, simultaneous stimulation waveforms by inducing a short in an electrode when a monitored value reaches or exceeds a predetermined threshold.
    Type: Application
    Filed: April 19, 2019
    Publication date: July 29, 2021
    Inventors: Susan J. Harkema, Yangsheng Chen, Claudia Angeli, Douglas J. Jackson, Manikandan Ravi, John Naber, Robert S. Keynton, Thomas Roussel, Saliya Kirigeeganage
  • Publication number: 20210212673
    Abstract: A trocar site closure clip includes a generally triangular central body, a pair of arms extending from the body, and an elongated support extending from the body between the arms. In use, the clip is advanced into a patient through a trocar, the trocar removed, then the clip partially retracted to engage and pierce the patients tissue. The biodegradable clip remains in the patients tissue, at least partially blocking the trocar site, and degrades over time as the patient heals.
    Type: Application
    Filed: June 11, 2019
    Publication date: July 15, 2021
    Applicant: University of Louisville Research Foundation, Inc.
    Inventors: Scott D. Cambron, Daniel S. Metzinger, Robert S. Keynton, Hares A. Patel, Dakota J. Waldecker
  • Patent number: 11007368
    Abstract: Disclosed herein are methods for neurostimulation therapy for spinal cord injury. More particularly, the present invention relates to methods for neurostimulation therapy for spinal cord injury. More particularly, the present invention relates to methods for providing multiple independent, simultaneous waveforms in neurostimulation therapy while minimizing or substantially eliminating undesirable interactions between the waveforms.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: May 18, 2021
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Susan J. Harkema, Yangshen Chen, Robert S. Keynton, Douglas J. Jackson, John Naber, Thomas Roussel, Manikandan Ravi
  • Publication number: 20210082123
    Abstract: A method for segmentation of a 3-D medical image uses an adaptive patient-specific atlas and an appearance model for 3-D Optical Coherence Tomography (OCT) data. For segmentation of a medical image of a retina, In order to reconstruct the 3-D patient-specific retinal atlas, a 2-D slice of the 3-D image containing the macula mid-area is segmented first. A 2-D shape prior is built using a series of co-aligned training OCT images. The shape prior is then adapted to the first order appearance and second order spatial interaction MGRF model of the image data to be segmented. Once the macula mid-area is segmented into separate retinal layers this initial slice, the segmented layers' labels and their appearances are used to segment the adjacent slices. This step is iterated until the complete 3-D medical image is segmented.
    Type: Application
    Filed: April 26, 2019
    Publication date: March 18, 2021
    Inventors: Ayman S. El-Baz, Ahmed Soliman, Ahmed Eltanboly, Ahmed Sleman, Robert S. Keynton, Harpal Sandhu, Andrew Switala
  • Patent number: 10737095
    Abstract: Neurostimulator devices are described. An example neurostimulator device includes a stimulation assembly connectable to a plurality of electrodes, wherein the plurality of electrodes are configured to stimulate a spinal cord. The neurostimulator device also includes an interface and at least one processor configured to modify at least one complex stimulation pattern deliverable by the plurality of electrodes by integrating data from the interface and performing a machine learning algorithm on the at least one complex stimulation pattern.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: August 11, 2020
    Assignee: Californina Institute of Technology
    Inventors: Joel W. Burdick, Yu-Chong Tai, John F. Naber, Robert S. Keynton, Victor Reggie Edgerton, Roland R Roy, Yury Gerasimenko, Susan J. Harkema, Jonathan Hodes, Claudia A. Angeli, Mandheerej S. Nandra, Thomas Anthony Desautels, Steven L. Upchurch, Douglas J. Jackson, Nicholas A. Terrafranca, Jr., Yangsheng Chen
  • Patent number: 10191009
    Abstract: Methods and sensing instruments are provided which perform automated electrochemical sensing and determination of metals in a liquid sample, such as drinking water or waste water. With use of microelectrode arrays, concentrations of metal are determined through a double potential step variation on anodic stripping coulometry, and the ability to generate these results provides for compact sensor networks that can be remotely deployed for determination of metals in samples, for real-time, decentralized sample monitoring.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: January 29, 2019
    Assignee: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Mohamed M. Marei, Richard P. Baldwin, Thomas J. Roussel, Jr., Robert S. Keynton
  • Patent number: 10058818
    Abstract: Present embodiments provide an energy-efficient separator having at least two chambers fluidically isolated by a gas permeable membrane for the removal of dissolved gases from a sample which, in some aspects, enables cost-effective monitoring of liquid samples to be performed remotely and automatically, and in other aspects is suited for various other applications where removal and/or regulation of gases in a sample are desirable.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: August 28, 2018
    Assignee: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Mohamed M. Marei, Richard P. Baldwin, Thomas J. Roussel, Jr., Robert S. Keynton
  • Publication number: 20180236241
    Abstract: Disclosed herein are methods for neurostimulation therapy for spinal cord injury. More particularly, the present invention relates to methods for neurostimulation therapy for spinal cord injury. More particularly, the present invention relates to methods for providing multiple independent, simultaneous waveforms in neurostimulation therapy while minimizing or substantially eliminating undesirable interactions between the waveforms.
    Type: Application
    Filed: August 18, 2016
    Publication date: August 23, 2018
    Applicant: UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC.
    Inventors: Susan J. Harkema, Yangshen Chen, Robert S. Keynton, Douglas J. Jackson, John Naber, Thomas Roussel, Manikandan Ravi
  • Publication number: 20180229038
    Abstract: Neurostimulator devices are described. An example neurostimulator device includes a stimulation assembly connectable to a plurality of electrodes, wherein the plurality of electrodes are configured to stimulate a spinal cord. The neurostimulator device also includes an interface and at least one processor configured to modify at least one complex stimulation pattern deliverable by the plurality of electrodes by integrating data from the interface and performing a machine learning algorithm on the at least one complex stimulation pattern.
    Type: Application
    Filed: March 29, 2018
    Publication date: August 16, 2018
    Inventors: Joel W. Burdick, Yu-Chong Tai, John F. Naber, Robert S. Keynton, Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Susan J. Harkema, Jonathan Hodes, Claudia A. Angeli, Mandheerej S. Nandra, Thomas Anthony Desautels, Steven L. Upchurch, Douglas J. Jackson, Nicholas A. Terrafranca, JR., Yangsheng Chen
  • Patent number: 10022791
    Abstract: Embodiments disclosed herein relate to a method for synthesizing self-assembling nanoparticles with defined plasmon resonances. More particularly, certain embodiments disclosed herein relate to an improved method for synthesizing self-assembling gold nanoparticles by dialyzing samples during the self-assembly process or in presence of a surface to reduce certain subpopulations.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: July 17, 2018
    Assignee: University of Louisville Research Foundation, Inc.
    Inventors: Dhruvinkumar Patel, Kurtis James, Martin G. O'Toole, Robert S. Keynton
  • Patent number: 9931508
    Abstract: Neurostimulator devices are described comprising: a stimulation assembly connectable to a plurality of electrodes, wherein the plurality of electrodes are configured to stimulate a spinal cord; one or more sensors; and at least one processor configured to modify at least one complex stimulation pattern deliverable by the plurality of electrodes by integrating data from the one or more sensors and performing a machine learning method implementing a Gaussian Process Optimization on the at least one complex stimulation pattern. Methods of use are also described.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 3, 2018
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, UNIVERSITY OF LOUISVILLE RESEARCH FOUNDATION, INC., THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, NEURORECOVERY TECHNOLOGIES, INC.
    Inventors: Joel W. Burdick, Yu-Chong Tai, John F. Naber, Robert S. Keynton, Victor Reggie Edgerton, Roland R. Roy, Yury Gerasimenko, Susan J. Harkema, Jonathan Hodes, Claudia A Angeli, Mandheerej S. Nandra, Thomas Anthony Desautels, Steven L. Upchurch, Douglas J. Jackson, Nicholas A. Terrafranca, Yangsheng Chen
  • Publication number: 20170216068
    Abstract: The present invention relates to devices, systems and methods for implanting a radially expandable endoluminal stent. In certain aspects, the devices, systems, and methods of the present invention include a radially expandable endoluminal stent mounted on a delivery tube and having a distal end and a proximal end. A first retention element is also mounted on the delivery tube at or adjacent to the distal end of the expandable endoluminal device, and a second retention element is mounted on the delivery tube at or adjacent to the proximal end of the expandable endoluminal device. Expansion of the first and/or second retention elements reduces or prevents migration of the stent during and immediately after stent deployment.
    Type: Application
    Filed: August 5, 2015
    Publication date: August 3, 2017
    Inventors: Amy C. Dwyer, Alex Isham, Scott D. Cambron, Robert S. Keynton