Patents by Inventor Robert S. Rubino

Robert S. Rubino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230361395
    Abstract: An electrical power source comprises a casing made by diffusion bonding an intermediate ceramic ring to a titanium base plate and a titanium top ring. An anode housed in the resulting open-ended container is electrically connected to the base plate. A separator is positioned on the anode. Separately, a cathode is electrically connected to a titanium lid. The lid fitted on the titanium top ring opposite the intermediate ceramic ring is welded to the top ring to close the casing. An electrolyte filled into the casing through a fill port in the lid activates the anode/cathode assembly. The fill port is then hermetically sealed. Gold pads are individually contacted to the base plate and the lid, which serve as opposite polarity terminals for the power source.
    Type: Application
    Filed: April 25, 2023
    Publication date: November 9, 2023
    Inventor: Robert S. Rubino
  • Publication number: 20230299401
    Abstract: An electrical energy power source comprises a casing made by micro-bonding an upper ceramic wafer and a lower ceramic wafer to the opposed surfaces of a ceramic ring. The upper and lower ceramic wafers have respective first and second conductive pathways extends therethrough. A first current collector supporting a first active material layer contacts the upper ceramic wafer and the first conductive pathway, and a second current collector supporting a second, opposite polarity active material layer contacts the lower ceramic wafer and the second conductive pathway. A separator resides between the first and second active materials, and an electrolyte filled into the casing through a fill port activates the active materials. The first and second conductive pathways serve as opposite polarity terminals for the power source.
    Type: Application
    Filed: March 14, 2023
    Publication date: September 21, 2023
    Inventors: Robert S. Rubino, David Dianetti, Jeffrey Salzmann, Adrish Ganguly
  • Patent number: 11742520
    Abstract: An electrochemical cell having a casing housing an electrode assembly of a separator residing between a lithium anode and a cathode comprising silver vanadium oxide and fluorinated carbon is described. The electrode assembly is activated with a nonaqueous electrolyte comprising a lithium salt dissolved in a solvent system of propylene carbonate mixed with 1,2-dimethoxyethane, dibenzyl carbonate (DBC), lithium bis(oxalato)borate (LiBOB), and fluoroethylene carbonate (FEC). Preferably DBC is present in an amount ranging from about 0.005 moles (M) to about 0.25M, LiBOB is present in an amount ranging from about 0.005 wt. 5 to about 5 wt. %, and FEC is present in an amount ranging from about 0.01 wt. % to about 10 wt. %. This electrolyte formulation is more conductive than the conventional or prior art binary and ternary solvent system electrolytes while being chemically and electrochemically stable toward Li/SVO cells, Li-SVO/CFx mixture cells, and Li-SVO/CFx sandwich cathode primary electrochemical cells.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: August 29, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Robert S. Rubino, Joseph M. Lehnes, Marcus J. Palazzo, David M. Spillman, Ho-Chul Yun
  • Patent number: 11735773
    Abstract: An electrochemical cell having a casing housing an electrode assembly of a separator residing between a lithium anode and a cathode comprising silver vanadium oxide and fluorinated carbon is described. The electrode assembly is activated with a nonaqueous electrolyte comprising a lithium salt dissolved in a solvent system of propylene carbonate mixed with 1,2-dimethoxyethane, lithium bis(oxalato)borate (LiBOB), and fluoroethylene carbonate (FEC). Preferably LiBOB is present in an amount ranging from about 0.005 wt. 5 to about 5 wt. %, and FEC is present in an amount ranging from about 0.01 wt. % to about 10 wt. %. This electrolyte formulation is more conductive than the conventional or prior art binary and ternary solvent system electrolytes while being chemically and electrochemically stable toward Li/SVO cells, Li-SVO/CFx mixture cells, and Li-SVO/CFx sandwich cathode primary electrochemical cells.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: August 22, 2023
    Assignee: Greatbatch Ltd.
    Inventors: Robert S. Rubino, Joseph M. Lehnes, Marcus J. Palazzo, David M. Spillman, Ho-Chul Yun
  • Publication number: 20230114832
    Abstract: A miniature electrochemical cell of a secondary chemistry having a total volume that is less than 0.5 cc is described. Before the present invention, miniature secondary electrochemical cells have been known to experience undesirable open circuit voltage discharge during their initial 21-day aging period. It is believed that electrolyte permeating through the cathode active material and an intermediate carbonaceous coating contacting the titanium base plate of the casing is the source of the undesirable discharge. To ameliorate this, aluminum is contacted to the inner surface of the base plate inside the casing. While aluminum is resistant to the corrosion reaction that is believed to be the mechanism for degraded open circuit voltage in miniature secondary electrochemical cells containing lithium, it is not biocompatible. This means that titanium is still a preferred material for the casing parts including the base plate that might be exposed to body fluids, and the like.
    Type: Application
    Filed: October 7, 2022
    Publication date: April 13, 2023
    Applicant: Greatbatch Ltd.
    Inventors: Lasantha Viyannalage, David Dianetti, Jared Arellano, Ho Chul Yun, Robert S. Rubino
  • Patent number: 11527795
    Abstract: A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are metal feedthroughs, such as of gold, and are formed by brazing gold into openings machined into one or both of ceramic casing halves. A thin film metallization, such as of titanium, contacts an edge periphery of each ceramic casing half. The first ceramic casing half is moved into registry with the second ceramic casing half so that the first and second ring-shaped metallizations contact each other.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: December 13, 2022
    Assignee: Greatbatch Ltd.
    Inventors: Robert S. Rubino, Keith W. Seitz, Xiaohong Tang, Todd C. Sutay, Brian P. Hohl, Holly Noelle Moschiano, Biswa P. Das, Afsar Ali, Sourabh Biswas, Gary Freitag, David Dianetti, Ho-Chul Yun, Thomas Marzano
  • Publication number: 20220384883
    Abstract: A miniature electrochemical cell having a volume of less than 0.5 cc is described. The cell casing comprises an open-ended ceramic container having a via hole providing an electrically conductive pathway extending through the container. A metal lid closes the open-end of the container. An electrode assembly housed inside the casing comprises an anode current collector deposited on an inner surface of the ceramic container in contact with the electrically conductive pathway in the via hole. An anode active material contacts the current collector and a cathode active material contacts the metal lid. A separator is disposed between the anode and cathode active materials. That way, the electrically conductive pathway serves as a negative terminal, and the lid, electrically isolated from the conductive pathway by the ceramic container, serves as a positive terminal. The negative and positive terminals are configured for electrical connection to a load.
    Type: Application
    Filed: August 5, 2022
    Publication date: December 1, 2022
    Inventors: Robert S. Rubino, David Dianetti, Xiaohong Tang
  • Patent number: 11509011
    Abstract: A miniature electrochemical cell having a volume of less than 0.5 cc is described. The cell casing comprises an open-ended ceramic container having a via hole providing an electrically conductive pathway extending through the container. A metal lid closes the open-end of the container. An electrode assembly housed inside the casing comprises an anode current collector deposited on an inner surface of the ceramic container in contact with the electrically conductive pathway in the via hole. An anode active material contacts the current collector and a cathode active material contacts the metal lid. A separator is disposed between the anode and cathode active materials. That way, the electrically conductive pathway serves as a negative terminal, and the lid, electrically isolated from the conductive pathway by the ceramic container, serves as a positive terminal. The negative and positive terminals are configured for electrical connection to a load.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: November 22, 2022
    Assignee: Greatbatch Ltd.
    Inventors: Robert S. Rubino, David Dianetti, Xiaohong Tang
  • Publication number: 20220166095
    Abstract: A miniature electrochemical cell of a primary or secondary chemistry with a total volume that is less than 0.5 cc is described. The cell casing comprises an annular sidewall connected to a base plate opposite an upper lid. A sealing glass forms a hermetic glass-to-ceramic seal with a dielectric material contacting a lower portion of the annular sidewall and a glass-to-metal seal with the base plate. Since the glass seals against three surfaces of the annular sidewall, which are the inner and outer sidewall surfaces adjacent to the lower edge, the glass seal is robust enough to withstand the heat generated when the lid is welded to the upper edge of the annular sidewall. The lid has a sealed electrolyte fill port that is axially aligned with an annulus residing between the inner surface of the annular sidewall and the electrode assembly.
    Type: Application
    Filed: September 23, 2021
    Publication date: May 26, 2022
    Inventors: David Dianetti, Lasantha Viyannalage, Ho-Chul Yun, Robert S. Rubino, Marcus J. Palazzo, Jared Arellano
  • Patent number: 11251480
    Abstract: A miniature electrochemical cell having a volume of less than 0.5 cc is described. The cell casing comprises an open-ended ceramic container having first and second via holes providing respective first and second electrically conductive pathways extending through the container. A metal lid secured to the open-end of the container by a gold seal provides the cell casing. An electrode assembly housed inside the casing comprises a cathode active material deposited on an inner surface of the ceramic container in contact with a current collector in electrical continuity with one of the conductive pathways. A solid electrolyte, preferably of LiPON (LixPOyNz), is deposited on the cathode active material followed by an anode active material in contact with the other conductive pathway. The first and second conductive pathways can comprise platinum or gold. That way, the first and second conductive pathways serve as negative and positive terminals for the cell.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: February 15, 2022
    Assignee: Greatbatch Ltd.
    Inventors: Robert S. Rubino, David Dianetti, Xiaohong Tang
  • Publication number: 20210359343
    Abstract: An electrochemical cell having a casing housing an electrode assembly of a separator residing between a lithium anode and a cathode comprising silver vanadium oxide and fluorinated carbon is described. The electrode assembly is activated with a nonaqueous electrolyte comprising a lithium salt dissolved in a solvent system of propylene carbonate mixed with 1,2-dimethoxyethane, dibenzyl carbonate (DBC), lithium bis(oxalato)borate (LiBOB), and fluoroethylene carbonate (FEC). Preferably DBC is present in an amount ranging from about 0.005 moles (M) to about 0.25M, LiBOB is present in an amount ranging from about 0.005 wt. 5 to about 5 wt. %, and FEC is present in an amount ranging from about 0.01 wt. % to about 10 wt. %. This electrolyte formulation is more conductive than the conventional or prior art binary and ternary solvent system electrolytes while being chemically and electrochemically stable toward Li/SVO cells, Li-SVO/CFx mixture cells, and Li-SVO/CFx sandwich cathode primary electrochemical cells.
    Type: Application
    Filed: May 3, 2021
    Publication date: November 18, 2021
    Inventors: Robert S. Rubino, Joseph M. Lehnes, Marcus J. Palazzo, David M. Spillman, Ho-Chul Yun
  • Patent number: 11114714
    Abstract: A miniature electrochemical cell having a volume of less than 0.5 cc includes a casing having a header assembly comprising a ceramic plate formed by co-firing a metallic-containing paste in first and second via holes extending through a green-state ceramic. The ceramic plate is joined to a metal ring by a gold-braze to form the header assembly that is secured to an open-ended metal container by a weld to provide the casing. The fill material resulting from sintering the metallic-containing paste provides a first conductive pathway to the anode current collector contacting an anode active material and a second conductive pathway to a cathode current collector contacting a cathode active material. A solid electrolyte activates the anode and cathode while also serving as a separator. Outer surfaces of the first and second conductive pathways are configured for electrical connection to a load.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: September 7, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Robert S. Rubino, Keith W. Seitz, Brian P. Hohl
  • Patent number: 11075377
    Abstract: A lithium electrochemical cell with increased energy density is described. The electrochemical cell comprises an improved sandwich cathode design with a second cathode active material of a relatively high energy density but of a relatively low rate capability sandwiched between two current collectors and with a first cathode active material having a relatively low energy density but of a relatively high rate capability in contact with the opposite sides of the two current collectors. In addition, a cathode fabrication process is described that increases manufacturing efficiency. The cathode fabrication process comprises a process in which first and second cathode active materials are directly applied to opposite surfaces of a perforated current collector and laminated together. The present cathode design is useful for powering an implantable medical device requiring a high rate discharge application.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 27, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Robert S. Rubino, William C. Thiebolt, Marcus J. Palazzo, Joseph M. Lehnes, Ho-Chul Yun, Mark J. Roy
  • Patent number: 11075421
    Abstract: A miniature electrochemical cell having a volume of less than 0.5 cc is described. The cell casing has a ceramic substrate, preferably of alumina, that is part of a metal-containing feedthrough formed by co-firing a metallic paste in a via hole extending through a green state ceramic. The sintered feedthrough serves as a header assembly that is then joined to an open-ended container by a gold-braze to thereby provide the cell casing. The metallic container serves as a terminal for one of the electrodes, for example the anode, while the metal fill material resulting from sintering the metallic paste serves as the opposite polarity terminal, for example the positive terminal for the cathode.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: July 27, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Robert S. Rubino, Keith W. Seitz, Brian P. Hohl
  • Patent number: 11075388
    Abstract: A current collector for an electrochemical cell is described. Unlike conventional current collector designs, the current collector does not have an unperforated perimeter frame completely bordering or surrounding a perforated interior region. Instead, only that portion of the current collector adjacent to the connector tab is unperforated. Otherwise, perforations extend directly to the perimeter edge.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: July 27, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Mark J. Roy, Joseph M. Lehnes, Marcus J. Palazzo, Robert S. Rubino, William C. Thiebolt, Ho-Chul Yun
  • Patent number: 11011787
    Abstract: A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are metal feedthroughs, such as of gold, and are formed by brazing gold into openings machined into one or both ceramic casing halves. The two ceramic casing halves are separated from each other by a metal interlayer, such as of gold, bonded to a thin film metallization adhesion layer, such as of titanium, that contacts an edge periphery of each ceramic casing half. A solid electrolyte (LixPOyNz) is used to activate the electrode assembly.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: May 18, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Robert S. Rubino, Gary Freitag, David Dianetti, Todd C. Sutay, Ho-Chul Yun, Thomas Marzano, Brian P. Hohl
  • Publication number: 20210119189
    Abstract: A miniature electrochemical cell having a volume of less than 0.5 cc is described. The cell casing comprises an open-ended ceramic container having first and second via holes providing respective first and second electrically conductive pathways extending through the container. A metal lid secured to the open-end of the container by a gold seal provides the cell casing. An electrode assembly housed inside the casing comprises a cathode active material deposited on an inner surface of the ceramic container in contact with a current collector in electrical continuity with one of the conductive pathways. A solid electrolyte, preferably of LiPON (LixPOyNz), is deposited on the cathode active material followed by an anode active material in contact with the other conductive pathway. The first and second conductive pathways can comprise platinum or gold. That way, the first and second conductive pathways serve as negative and positive terminals for the cell.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Robert S. Rubino, David Dianetti, Xiaohong Tang
  • Publication number: 20210111382
    Abstract: A miniature electrochemical cell having a volume of less than 0.5 cc is described. The cell casing comprises an open-ended ceramic container having a via hole providing an electrically conductive pathway extending through the container. A metal lid closes the open-end of the container. An electrode assembly housed inside the casing comprises an anode current collector deposited on an inner surface of the ceramic container in contact with the electrically conductive pathway in the via hole. An anode active material contacts the current collector and a cathode active material contacts the metal lid. A separator is disposed between the anode and cathode active materials. That way, the electrically conductive pathway serves as a negative terminal, and the lid, electrically isolated from the conductive pathway by the ceramic container, serves as a positive terminal. The negative and positive terminals are configured for electrical connection to a load.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 15, 2021
    Inventors: Robert S. Rubino, David Dianetti, Xiaohong Tang
  • Patent number: 10957884
    Abstract: A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The casing enclosure consists of a lower plate supporting a cylindrically-shaped can having an open upper end closed with a cover. The can is selectively coated with a dielectric material to provide electrical isolation of the to-be-housed active materials from the can sidewall. A glass-to-metal seal electrically isolates the lower plate from the can. An electrode assembly comprising a sandwich of cathode active material/separator/anode active material is housed in the casing. That way, the lower plate contacting the cathode active material is the positive terminal and the closing cover connected to the can and contacted to the anode active material serves as the negative cell terminal. An electrolyte filled into the casing activates the electrode assembly and the fill opening is sealed with a plug. The cell can be of either a primary or a secondary chemistry.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: March 23, 2021
    Assignee: Greatbatch Ltd.
    Inventors: David Dianetti, Gary Freitag, Robert S. Rubino, Keith W. Seitz, Ho-Chul Yun, Todd C. Sutay, Brian P. Hohl, David Wutz
  • Patent number: 10916740
    Abstract: An electrochemical cell, preferably a secondary, rechargeable cell, including a casing comprised of a main body portion having opposed lower and upper open ends closed by respective lower and upper lids is described. The main body portion is composed of titanium Grades 5 or 23 having a relatively high electrical resistivity material while the lower and upper lids are composed of titanium Grades 1 or 2. The lids are preferably joined to the main body portion using laser welding. The combination of these differing titanium alloys provides a cell casing that effectively retards eddy current induced heating during cell recharging.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: February 9, 2021
    Assignee: Greatbatch Ltd.
    Inventors: Gary Freitag, Xiangyang Dai, Mark J. Roy, Robert S. Rubino