Patents by Inventor Robert S. Siffert

Robert S. Siffert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8202219
    Abstract: A method for the assessment of various properties of bone is provided. The method includes applying a pair of ultrasound transducers to skin on opposite sides of the bone and generating an ultrasound signal and directing the signal through both the bone to obtain a bone output signal. The method further includes establishing a set of parameters associated with the bone output signal and then further processing the parameters in order to obtain the desired bone property. Two novel parameters are also disclosed, namely the net time delay (NTD) and mean time duration (MTD) parameters. An apparatus for the assessment of various properties of bone is also provided. The apparatus includes a pair of ultrasound transducers which may be single-element transducers or array transducers in any combination. The apparatus further includes various computer hardware components and computer software for generating and directing the ultrasound signal, establishing the parameter set and performing the processing.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: June 19, 2012
    Assignee: CyberLogic, Inc.
    Inventors: Gangming Luo, Robert S. Siffert, William A. Johnson, Ronald L. Altman, Jonathan J. Kaufman
  • Patent number: 6570955
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a composite phantom. The composite phantom is comprised of at least two materials, superimposed on one another. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and composite phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of composite phantom data and sets of bone data. The data sets are then numerically processed using interpolation whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and the bone status is determined using interpolation based only on a single film.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: May 27, 2003
    Assignee: Cyberlogic, Inc.
    Inventors: Robert S. Siffert, Jonathan J. Kaufman
  • Patent number: 6324252
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a composite phantom. The composite phantom is comprised of at least two materials, superimposed on one another. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and composite phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of composite phantom data and sets of bone data. The data sets are then numerically processed using interpolation whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and the bone status is determined using interpolation based only on a single film.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: November 27, 2001
    Assignee: CyberLogic, Inc.
    Inventors: Robert S. Siffert, Jonathan J. Kaufman
  • Publication number: 20010004394
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a composite phantom. The composite phantom is comprised of at least two materials, superimposed on one another. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and composite phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of composite phantom data and sets of bone data. The data sets are then numerically processed using interpolation whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and the bone status is determined using interpolation based only on a single film.
    Type: Application
    Filed: November 30, 2000
    Publication date: June 21, 2001
    Applicant: CyberLogic, Inc.
    Inventors: Robert S. Siffert, Jonathan J. Kaufman
  • Publication number: 20010002925
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a composite phantom. The composite phantom is comprised of at least two materials, superimposed on one another. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and composite phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of composite phantom data and sets of bone data. The data sets are then numerically processed using interpolation whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and the bone status is determined using interpolation based only on a single film.
    Type: Application
    Filed: November 30, 2000
    Publication date: June 7, 2001
    Applicant: CyberLogic, Inc.,
    Inventors: Robert S. Siffert, Jonathan J. Kaufman
  • Patent number: 6173038
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a composite phantom. The composite phantom is comprised of at least two materials, superimposed on one another. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and composite phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of composite phantom data and sets of bone data. The data sets are then numerically processed using interpolation whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and the bone status is determined using interpolation based only on a single film.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: January 9, 2001
    Assignee: CyberLogic, Inc.
    Inventors: Robert S. Siffert, Jonathan J. Kaufman
  • Patent number: 6064716
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a material phantom. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and material phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of material phantom data and sets of bone data. The data sets are then processed with a feedforward neural network whereby to generate the indicated estimate of bone status, namely, bone-mineral density. In an alternative embodiment, an independent measurement is made of the total tissue thickness, and input to the neural network to achieve higher accuracy and precision.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: May 16, 2000
    Assignee: CyberLogic, Inc.
    Inventors: Robert S. Siffert, Alessandro Chiabrera, Jonathan J. Kaufman
  • Patent number: 5917877
    Abstract: Non-invasive quantitative plain radiographic evaluation of bone in a bony locale of a body is performed by subjecting the bony locale to a broadband collimated x-ray beam having energy in the range of about 20 keV to 150 keV. Alongside the bony locale is a multiple-material phantom containing at least two distinct materials. An energy-selective multiple-film detector cassette containing at least two films is placed under the body and multiple-material phantom to receive the transmitted x-ray beam. The films in the cassette are developed and digitally scanned to produce sets of multiple-material phantom data and sets of bone data. The data sets are then processed with a nonlinear algorithm whereby to generate the indicated estimate of bone status, namely, bone-mineral density.
    Type: Grant
    Filed: September 5, 1997
    Date of Patent: June 29, 1999
    Assignee: Cyberlogic, Inc.
    Inventors: Alessandro Chiabrera, Robert S. Siffert, Jonathan J. Kaufman