Patents by Inventor Robert Splinter

Robert Splinter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160183844
    Abstract: A laser catheter with a pressure sensor is provided according to embodiments of the invention. The pressure sensor may be coupled with the distal end of the laser catheter and may comprise any of various piezoelectric materials, for example Polyvinylidene Difluoride (PVDF). In various embodiments of the invention the pressure sensor is configured to detect pressure longitudinally and coaxially. The pressure sensor may provide an electric potential that is proportional to the vessel pressure and may be used to monitor and/or adjust laser parameters. In other embodiments the results from the pressure sensor may be used to determine the vessel size and/or the type of material being ablated.
    Type: Application
    Filed: March 8, 2016
    Publication date: June 30, 2016
    Inventor: Robert Splinter
  • Patent number: 9289173
    Abstract: A laser catheter with a pressure sensor is provided according to embodiments of the invention. The pressure sensor may be coupled with the distal end of the laser catheter and may comprise any of various piezoelectric materials, for example Polyvinylidene Difluoride (PVDF). In various embodiments of the invention the pressure sensor is configured to detect pressure longitudinally and coaxially. The pressure sensor may provide an electric potential that is proportional to the vessel pressure and may be used to monitor and/or adjust laser parameters. In other embodiments the results from the pressure sensor may be used to determine the vessel size and/or the type of material being ablated.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: March 22, 2016
    Assignee: The Spectranetics Corporation
    Inventor: Robert Splinter
  • Publication number: 20150366475
    Abstract: A monitoring device includes a sensor band configured to be secured around an appendage of a subject, and a sensing element movably secured to the sensor band via a biasing element. The sensor band has a first mass, and the sensing element has a second mass that is less than the first mass. The biasing element is configured to urge the sensing element into contact with a portion of the appendage, and the biasing element decouples motion of the band from the sensing element. A monitoring device includes a band that is configured to be secured around an appendage of a subject. One or more biasing elements extend outwardly from the band inner surface and are configured to contact the appendage. A sensing element is secured to the band inner surface. The one or more biasing elements decouples motion of the band from the sensing element.
    Type: Application
    Filed: January 24, 2014
    Publication date: December 24, 2015
    Inventors: Steven Matthew Just, Jesse Berkley Tucker, Robert Splinter, Steven Francis LeBoeuf
  • Publication number: 20150351688
    Abstract: A monitoring device includes a biasing element having opposite first and second end portions, an earbud attached to the biasing element first end portion, and a sensing element attached to the biasing element second end portion. The earbud has a first mass, and the sensing element has a second mass that is less than the first mass. The biasing element is configured to urge the sensing element into contact with a portion of the ear when the earbud is inserted into the ear. The biasing element decouples motion of the earbud from the sensing element. The sensing element includes at least one energy emitter configured to direct energy at a target region of the ear and at least one detector configured to detect an energy response signal from the target region or a region adjacent the target region.
    Type: Application
    Filed: January 24, 2014
    Publication date: December 10, 2015
    Inventors: Steven Matthew Just, Jesse Berkley Tucker, Robert Splinter, Steven Francis LeBoeuf
  • Publication number: 20150245796
    Abstract: A laser catheter with a pressure sensor is provided according to embodiments of the invention. The pressure sensor may be coupled with the distal end of the laser catheter and may comprise any of various piezoelectric materials, for example Polyvinylidene Difluoride (PVDF). In various embodiments of the invention the pressure sensor is configured to detect pressure longitudinally and coaxially. The pressure sensor may provide an electric potential that is proportional to the vessel pressure and may be used to monitor and/or adjust laser parameters. In other embodiments the results from the pressure sensor may be used to determine the vessel size and/or the type of material being ablated.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 3, 2015
    Inventor: Robert Splinter
  • Patent number: 9066742
    Abstract: A laser catheter with a pressure sensor is provided according to embodiments of the invention. The pressure sensor may be coupled with the distal end of the laser catheter and may comprise any of various piezoelectric materials, for example Polyvinylidene Difluoride (PVDF). In various embodiments of the invention the pressure sensor is configured to detect pressure longitudinally and coaxially. The pressure sensor may provide an electric potential that is proportional to the vessel pressure and may be used to monitor and/or adjust laser parameters. In other embodiments the results from the pressure sensor may be used to determine the vessel size and/or the type of material being ablated.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: June 30, 2015
    Assignee: The Spectranetics Corporation
    Inventor: Robert Splinter
  • Publication number: 20130338500
    Abstract: Embodiments of the present invention include a laser catheter that includes a catheter body, a light guide, and a distal tip that extends beyond the exit aperture of the light guide. In some embodiments, an imaging device is disposed on the distal tip such that the imaging device is distal relative to the exit aperture of the light guide. In some embodiments, the imaging device can be gated to record images during and/or slightly beyond periods when the laser catheter is not activated.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 19, 2013
    Applicant: The Spectranetics Corporation
    Inventors: Kevin D. Taylor, Ken Harlan, James Nye, Robert Splinter, Jacob Keeler, Chris J. Hebert, Wade Bowe
  • Patent number: 8545488
    Abstract: Embodiments of the present invention include a laser catheter that includes a catheter body, a light guide, and a distal tip that extends beyond the exit aperture of the light guide. In some embodiments, an imaging device is disposed on the distal tip such that the imaging device is distal relative to the exit aperture of the light guide. In some embodiments, the imaging device can be gated to record images during and/or slightly beyond periods when the laser catheter is not activated.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: October 1, 2013
    Assignee: The Spectranetics Corporation
    Inventors: Kevin D. Taylor, Ken Harlan, James Nye, Robert Splinter, Jacob Keeler, Chris J. Hebert, Wade A. Bowe
  • Patent number: 8059274
    Abstract: An optical sensor that provides lateral viewing while maintaining light polarization is disclosed according to one embodiment of the invention. The sensor includes a sensor body, at least one waveguide and at least one refractive optical element. The sensor body may includes proximal end and a distal end. The waveguide includes a proximal end coincident near the proximal end of the sensor body and a distal end coincident at a point near the distal end of the sensor body. The waveguide may include one or more fiber optic. The waveguide may be positioned within the sensor body. The refractive optical element may be positioned within the sensor near the distal end of the waveguide and may be configured to refract light received from the distal end of the waveguide outward from the sensor. The refractive optical element may include one or more prisms.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: November 15, 2011
    Assignee: The Spectranetics Corporation
    Inventor: Robert Splinter
  • Publication number: 20110009750
    Abstract: Embodiments of the present invention include a laser catheter that includes a catheter body, a light guide, and a distal tip that extends beyond the exit aperture of the light guide. In some embodiments, an imaging device is disposed on the distal tip such that the imaging device is distal relative to the exit aperture of the light guide. In some embodiments, the imaging device can be gated to record images during and/or slightly beyond periods when the laser catheter is not activated.
    Type: Application
    Filed: December 30, 2009
    Publication date: January 13, 2011
    Applicant: Spectranetics
    Inventors: Kevin D. Taylor, Ken Harlan, James Nye, Robert Splinter, Jacob Keeler, Chris J. Hebert, Wade A. Bowe
  • Publication number: 20090254074
    Abstract: A light-diverting catheter tip is provided according to embodiments disclosed herein. The light-diverting catheter tip may be coupled with the distal tip of a laser catheter and divert at least a portion of the light exiting the distal tip of the laser catheter such that the spot size of the laser beam on an object after exiting the catheter tip is larger than the spot size of the light entering the catheter without the catheter tip. The catheter tip may be removably coupled with the catheter or constructed as part of the catheter. In other embodiments, the catheter tip may conduct fluid and/or divert fluid at the tip of the laser catheter.
    Type: Application
    Filed: October 20, 2008
    Publication date: October 8, 2009
    Applicant: Spectranetics
    Inventors: Robert Splinter, Robert L. Carver, Ted A. Giem, Kevin D. Taylor, Clint Fix
  • Publication number: 20090171330
    Abstract: A method of locating and ablating a target tissue is described. The method includes providing a catheter that has at least one light guide, where the light guide is adaptable to receive light from a light source. A distal portion of the catheter is advanced through vasculature of a patient towards the target tissue. A nanoparticle dye is introduced into the patient, where the nanoparticles selectively bind to the target tissue. The target tissue is mapped by detecting fluorescence light emitted from the nanoparticle dye bound to the tissue. The distal tip of the catheter is positioned adjacent to the mapped target tissue, and a light pulse is transmitted through the light guide to ablate at least a portion of the target tissue.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Applicant: Spectranetics
    Inventors: Kevin Taylor, Robert Splinter
  • Publication number: 20090147257
    Abstract: An optical sensor that provides lateral viewing while maintaining light polarization is disclosed according to one embodiment of the invention. The sensor includes a sensor body, at least one waveguide and at least one refractive optical element. The sensor body may includes proximal end and a distal end. The waveguide includes a proximal end coincident near the proximal end of the sensor body and a distal end coincident at a point near the distal end of the sensor body. The waveguide may include one or more fiber optic. The waveguide may be positioned within the sensor body. The refractive optical element may be positioned within the sensor near the distal end of the waveguide and may be configured to refract light received from the distal end of the waveguide outward from the sensor. The refractive optical element may include one or more prisms.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 11, 2009
    Applicant: Spectranetics
    Inventor: Robert Splinter
  • Publication number: 20090125007
    Abstract: A laser catheter with a pressure sensor is provided according to embodiments of the invention. The pressure sensor may be coupled with the distal end of the laser catheter and may comprise any of various piezoelectric materials, for example Polyvinylidene Difluoride (PVDF). In various embodiments of the invention the pressure sensor is configured to detect pressure longitudinally and coaxially. The pressure sensor may provide an electric potential that is proportional to the vessel pressure and may be used to monitor and/or adjust laser parameters. In other embodiments the results from the pressure sensor may be used to determine the vessel size and/or the type of material being ablated.
    Type: Application
    Filed: November 9, 2007
    Publication date: May 14, 2009
    Applicant: Spectranetics
    Inventor: Robert Splinter
  • Publication number: 20090112198
    Abstract: A catheter system to ablate target matter within a mammalian body using light energy is described. The system may include an open-ended catheter tip through which a liquid light guide medium flows to the target matter, where at least a portion of the liquid light guide medium exiting the catheter tip creates a fluid optical channel to transmit the light energy from the catheter tip to the target matter. The system may also include a catheter lumen whose distal end includes the open-ended catheter tip, a light source to generate the light energy, and a liquid light guide medium source fluidly coupled to the catheter lumen. The liquid light guide medium source may include a reservoir of the liquid light guide medium that includes a magnesium chloride solution or a lactated Ringer's solution.
    Type: Application
    Filed: October 24, 2007
    Publication date: April 30, 2009
    Applicant: Spectranetics
    Inventors: Krishn Khanna, Robert Splinter
  • Patent number: 7477925
    Abstract: An erythema meter includes a probe, a light source of one or more specific probing and reference wavelengths, and an acoustic detector which determines the level of erythema present in the dental pulp chamber of a tooth. The probing and reference wavelengths are delivered in pulsed or amplitude modulated fashion through the probe, thereby permitting electronic identification and filtering of the received data. The absorption of the light wave raises the temperature of the material in the tooth and causes it to expand, thus creating tiny shockwaves which are picked up with the acoustic detector, revealing information on the location of blood and the quantity of blood inside the tooth. The erythema meter accurately measures the erythema, or inflammation, within the tooth in a qualitative and quantitative manner.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: January 13, 2009
    Assignee: Charlotte-Mecklenburg Hospital Authority
    Inventors: Peter B. Lockhart, Robert Splinter, Michael T. Brennan, Philip C. Fox
  • Patent number: 6862542
    Abstract: The present invention provides an erythema meter comprising a light guide that carries light of two specific wavelengths (probing and reference) at two distinct frequencies that are generated and modulated by a either a single or multiple source(s), a photodetector mounted in the tip of the guide that receives light reflected from the surface being examined, and circuitry electrically coupled to the guide for processing the light data, and determining the level of erythema present on the examined surface. The probing and reference wavelengths are delivered in sinusoidal or amplitude modulated fashion, thereby permitting electronic filtering of the received data. A calculating circuit determines the quotient of the two wavelengths after having been reflected off of a surface, such as mucosal or dermal surfaces, which is representative of the severity of erythema present in the surface.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: March 1, 2005
    Assignee: Charlotte-Mecklenburg Hospital
    Inventors: Peter Lockhart, Robert Splinter, Matthew J. Davis
  • Publication number: 20040073374
    Abstract: An erythema meter includes a probe, a light source of one or more specific probing and reference wavelengths, and an acoustic detector which determines the level of erythema present in the dental pulp chamber of a tooth. The probing and reference wavelengths are delivered in pulsed or amplitude modulated fashion through the probe, thereby permitting electronic identification and filtering of the received data. The absorption of the light wave raises the temperature of the material in the tooth and causes it to expand, thus creating tiny shockwaves which are picked up with the acoustic detector, revealing information on the location of blood and the quantity of blood inside the tooth. The erythema meter accurately measures the erythema, or inflammation, within the tooth in a qualitative and quantitative manner.
    Type: Application
    Filed: October 8, 2003
    Publication date: April 15, 2004
    Inventors: Peter B. Lockhart, Robert Splinter, Michael T. Brennan, Philip C. Fox
  • Publication number: 20030135098
    Abstract: The present invention provides an erythema meter comprising a light guide that carries light of two specific wavelengths (probing and reference) at two distinct frequencies that are generated and modulated by a either a single or multiple source(s), a photodetector mounted in the tip of the guide that receives light reflected from the surface being examined, and circuitry electrically coupled to the guide for processing the light data, and determining the level of erythema present on the examined surface. The probing and reference wavelengths are delivered in sinusoidal or amplitude modulated fashion, thereby permitting electronic filtering of the received data.
    Type: Application
    Filed: January 17, 2002
    Publication date: July 17, 2003
    Inventors: Peter Lockhart, Robert Splinter, Matthew J. Davis
  • Patent number: 5920390
    Abstract: The fiberoptic interferometer includes a broadband light source which is selected to illuminate tissue of predetermined organ with light having a wavelength within a predetermined range of wavelengths. Within the predetermined range of wavelengths, the attenuation characteristics of tissue of the predetermined organ define a region of minimum attenuation upon illumination with light having a first wavelength. As a result, the fiberoptic interferometer can precisely determine the optical properties of the tissue and can therefore identify the tissue by comparing the interferometric signal produced upon illumination of the tissue sample with predetermined interferometric signals corresponding to illumination of different types of tissue of the predetermined organ with light having the first wavelength. The fiberoptic interferometer can also include a light source which includes wavelength selection means for controllably selecting the predetermined wavelength of light emitted by the light source.
    Type: Grant
    Filed: June 26, 1997
    Date of Patent: July 6, 1999
    Assignees: University of North Carolina, Charlotte-Mecklenburg Hospital Authority
    Inventors: Faramarz Farahi, Mohammad Yasin Akhtar Raja, Robert Splinter